期刊文献+

一种基于局部加权回归的分类方法 被引量:4

A novel classification method based on locally weighted regression
下载PDF
导出
摘要 分类是数据挖掘和数据分析中最有应用价值的技术之一。传统的积极学习方法需要预先对模型空间进行假设,并且没有充分考虑到实例之间的相关性,其泛化能力将会受到一定程度的影响。针对上述问题,提出了一种基于新型映射关系的局部加权回归方法 MLWR。该算法首先找出测试样本在训练集中的近邻样本,然后建立测试样本和近邻样本的回归函数,根据建立的回归模型和近邻样本的标签,计算得到测试样本的标签。实验与当前流行的多种分类方法在UCI的9个数据集上进行测试。实验结果表明我们的方法能有效地提高分类精度,对较大样本数据也有较好的适用性。 Classification is one of the most practical techniques in data mining and analysis. Existing classification algorithms based on eager learning require a model assumption and do not address the correlations between individual instances, such that their performance can be affected. In this paper, we propose a new learning method based on the locally weighted regression, called MLWR. For a given test example, the MLWR firstly identifies the neighboring instances in the training set, and a locally weighted regression model is generated from the test instance and its neighboring instances. Then the test label is calculated by using the regression model and the neighboring labels. In the experiments, five classification methods are tested on 9 data sets of UCI. Experiment results show that the performance of the MLWR is superior to other methods and also suitable for big data.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第10期1959-1964,共6页 Computer Engineering & Science
基金 浙江省教育厅资助项目(Y201328291) 浙江省自然科学基金资助项目(LZ14F030001 LY14F020012)
关键词 分类 映射关系 局部加权回归 K-NN 懒惰学习 classification mapping relationship locally weighted regression k-NN lazy learning
  • 相关文献

参考文献4

二级参考文献85

  • 1周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3吴文丽,刘玉树,赵基海.一种新的混合聚类算法[J].系统仿真学报,2007,19(1):16-18. 被引量:18
  • 4王惠文,孟洁.多元线性回归的预测建模方法[J].北京航空航天大学学报,2007,33(4):500-504. 被引量:241
  • 5Japkowicz N. Learning from imbalanced data sets: A comparison of various strategies, WS-00-05 [R]. Menlo Park, CA: AAAI Press, 2000
  • 6Chawla N V, Japkowicz N, Kotcz A. Editorial: Special issue on learning from imbalaneed data sets [J]. Sigkdd Explorations Newsletters, 2004, 6( 1 ) : 1-6
  • 7Weiss Gary M. Mining with rarity: A unifying frameworks [J]. SIGKDD Explorations Newsletters, 2004, 6(1): 7-19
  • 8Maloof M A. Learning when data sets are imbalanced and when costs are unequal and unknown [OL]. [2008-01-06]. http://www. site. uottawa. ca/-nat/workshop2003/workshop 2003. html
  • 9Chawla N V, Hall L O, Bowyer K W, et al. SMOTE: Synthetic minority oversampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16 : 321-357
  • 10Jo Taeho, Japkowicz Nathalie. Class imbalances versus small disjunets [J]. SIGKDD Explorations Newsletters, 2004, 6 (1): 40-49

共引文献111

同被引文献27

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部