期刊文献+

Hilbert C-模中融合框架的新刻画 被引量:1

New characterization of fusion frames in Hilbert C*-modules
下载PDF
导出
摘要 观察到Hilbert C*-模中融合框架原定义的不合理性,然后通过权重集的选取将其改进,得到融合框架的新定义并给出其等价形式.特别地,利用算子理论方法得到了Hilbert C*-模中融合框架的一个新刻画. An observation shows that the original definition of fusion frames in Hilbert C*-modules is unrea- sonable and then, it is improved by a replacement of the associated weight set. An equivalent form of the new definition of fusion frames in Hilbert C*-modules is also given and, especially, a new characterization of fusion frames in Hilbert C*-modules is obtained by the method of operator theory
出处 《纯粹数学与应用数学》 2015年第5期456-463,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11271148)
关键词 HILBERT C-模 融合框架 刻画 Hilbert C*-module, fusion frame, characterization
  • 相关文献

参考文献16

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier seriers [J]. Trans. Amer. Math. Soc., 1952 72(2):341-366.
  • 2Daubechies I. Ten Lectures on Wavelets [M]. Philadelphia: SIAM, 1992.
  • 3Feichtinger H G, Strohmer TGabor Analysis and Algorithms: Theory and Applications [M]. Boston Birkh/iuser, 1998.
  • 4Feichtinger H G, Strohmer T. Advances in Gabor Analysis [M]. Boston: Birkh/iuser, 2003.
  • 5Casazza P G. Modern tools for Weyl-Heisenberg frame theory [J]. Adv. Imag. Elect. Phys., 2001, 115(1):1-127.
  • 6Christensen O. An Introduction to Frames and Riesz Bases [M]. Boston: Birkh/iuser, 2002.
  • 7唐青松,张祥德,陆小军,朱和贵.非均匀Gabor框架的稳定性[J].纯粹数学与应用数学,2009,25(4):828-832. 被引量:1
  • 8李岚.算子框架的稳定性[J].纯粹数学与应用数学,2008,24(2):375-378. 被引量:2
  • 9相中启,贾琛琛.Christensen的改进结果在研究框架扰动中的应用[J].兰州大学学报(自然科学版),2012,48(4):115-118. 被引量:4
  • 10相中启,简辉华.Hilbert空间中连续框架扰动的新结果[J].兰州大学学报(自然科学版),2013,49(3):405-408. 被引量:4

二级参考文献45

  • 1Sun Wenchang. Irregular Gabor frames and their stability[J]. Proceeding of American Mathematical Society, 1997,3:2883-2893.
  • 2Casaza P G, Christensen O, Mark C L. Perturbations of Weyl-Heisenberg frames[J]. Hokkaido Math., 2002,7:539-553.
  • 3Favier S, Zalik R A. On the stability of frames and Riesz Bases[J]. Applied and Computational Harmonic Analysis, 1995,2:160-173.
  • 4Lakey J D, Wang Ying. On perturbations of irregular Gabor frames[J]. Journal of Computational and Applied Mathematics, 2003,1:111-129.
  • 5Sun Wenchang, Zhou Xingwei. On the stability of Gabor frames[J]. Advanced in Applied Mathematics, 2001,3:181-191.
  • 6Liu Youming. Two conditions for nonuniform Gabor frames[J]. Acta. Mathematica Scientia of Computational and Applied Mathematics, 2006,3:415-420.
  • 7Heil C. History and evolution of the density theorem for Gabor frames[J]. The Journal of Fourier Analysis and Applications, 2007,12:113-166.
  • 8Conwayjb. A Course in Functional Analysis[M]. New York: Spring-Verlag, 1995.
  • 9Christensen O. An Introduction to Frames and Riesz Bases[M]. Boston: Birkhauser,2003.
  • 10Daubechies I. Ten Lectures on Wavelets[M]. Philadelphia: SIAM, 1992.

共引文献5

同被引文献19

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Transactions of the American Mathematical Society, 1952, 72(2) :341-366.
  • 2Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions[J]. Journal of Mathematical Physics, 1986, 27 (5) : 1271- 1283.
  • 3Casazza P G. The art of frame theory[J]. Taiwan Residents Journal of Mathematics, 2000, 4(2) : 129-201.
  • 4Christensen O. An introduction to frames and Riesz bases[M]. Boston.. Birkhauser, 2002:87-165.
  • 5Benedetto J J, Powell A, Yilmaz O. Sigma-Delta quantization and finite frames[J]. IEEE Transactions on Information Theory, 2006, 52(5):1990-2005.
  • 6Candes E J, Donoho D L. Continuous curvet transform: Ⅱ. Discretization and frames[J]. Applied and Computational Har- monic Analysis, 2005, 19(2) :198-222.
  • 7Sun W C. Asymptotic properties of Gabor frame operators as sampling density tends to infinity[J]. Journal of Functional Analysis, 2010, 258(3):913-932.
  • 8Sun W C. G-frames and g-Riesz bases[J]. Journal of Mathematical Analysis and Applications, 2006, 322(1) :437-452.
  • 9Khosravi A, Khosravi B. Fusion frames and g-frames in Hilbert C-modules[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2008, 6(3):433-446.
  • 10Xiao X C, Zeng X M. Some properties of g-frames in Hilbert C -modules[J]. Journal of Mathematical Analysis and Applications, 2010, 363(2):399-408.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部