期刊文献+

简化洛伦兹混沌系统的追踪同步控制 被引量:29

Tracking Synchronization Control of the Simplified Lorenz Chaotic System
原文传递
导出
摘要 基于李亚普诺夫稳定性原理,推导出简化洛伦兹系统的追踪同步控制定理,并从理论上证明设计的追踪控制器可以使系统追踪任意可微参考信号.采用设计的追踪同步控制器,实现简化洛伦兹系统追踪直流信号、正弦信号和超混沌信号的情况.分析控制参数的大小与混沌追踪同步性能之间的关系,发现采用较大的参数能缩短同步时间.数值仿真结果表明该方法的可靠性和有效性.为实现简化洛伦兹混沌系统保密通信提供了新的同步方案. A tracking synchronization control theorem of the simplified Lorenz system is deduced on the basis of the Lyapunov stability theory. We demonstrate that the system can, in theory, track any differentiable reference signals by employing this tracking controller. Using the controller, we investigate the tracking control issues of the simplified Lorenz system by tracking the direct current signal, sine signal, and hyperchaotic signal. The relation between the synchronization performance and the control parameters is discussed, and we demonstrate that a larger control parameter can reduce the synchronization setup time. Simulation results show the effec- tiveness and feasibility of the method, which provides a new synchronization scheme for the simplified Lorenz chaotic system to achieve chaotic secure communication.
出处 《信息与控制》 CSCD 北大核心 2015年第4期393-397,共5页 Information and Control
基金 国家自然科学基金资助项目(61161006 61073187) 中央高校基本科研业务费专项资金资助项目(2014zzts010)
关键词 混沌同步 追踪控制 李亚普诺夫稳定性原理 简化洛伦兹系统 chaotic synchronization tracking control Lyapunov stability theory simplified Lorenz system
  • 相关文献

参考文献19

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 2Mahmoud E E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J]. Mathematical Methods in the Applied Sciences, 2014, 37(3): 321-328.
  • 3Matheny M H, Grau M, Villanueva L G, et al. Phase synchronization of two anharmonic nanomechanical oscillators[J]. Physical Review Letters, 2014, 112(1): 014101.
  • 4Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1/2): 1-9.
  • 5Lü L, Luan L, Meng L, et al. Study on spatiotemporal chaos tracking synchronization of a class of complex network[J]. Nonlinear Dynamics, 2012, 70(1): 89-95.
  • 6Li C L. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 405-413.
  • 7陈士华,谢进,陆君安,刘杰.Rssler混沌系统的追踪控制与同步[J].物理学报,2002,51(4):749-752. 被引量:53
  • 8闵富红,王执铨.复杂Dynamos混沌系统的追踪控制与同步[J].物理学报,2008,57(1):31-36. 被引量:18
  • 9谌龙,王德石.陈氏混沌系统的稳定追踪控制[J].控制与决策,2007,22(8):935-938. 被引量:2
  • 10Sun K H, Sprott J C. Dynamics of a simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357-1366.

二级参考文献107

共引文献116

同被引文献163

  • 1宁爱兵,马良,熊小华.基于复杂适应系统的蚂蚁群体智能研究[J].微计算机信息,2008,24(1):265-267. 被引量:7
  • 2王永富,柴天佑.自适应模糊控制理论的研究综述[J].控制工程,2006,13(3):193-198. 被引量:77
  • 3鞠春贤,王贺元.浅析Lorenz方程[J].辽宁工学院学报,2007,27(5):337-341. 被引量:6
  • 4朱少平.Lorenz方程的动力学特性与控制[J].陕西教育学院学报,2007,23(4):81-84. 被引量:4
  • 5闵富红,王执铨.复杂Dynamos混沌系统的追踪控制与同步[J].物理学报,2008,57(1):31-36. 被引量:18
  • 6MAHMOUD E E.Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J].Mathematical Methods in the Applied Sciences,2014,37(3):321-328.
  • 7NJAH A N.Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J].Nonlinear Dynamics,2010,61(1/2):1-9.
  • 8Mahmoud E E. Complex complete synchronization oftwo nonidentical hyperchaotic complex nonlinear sys-tems [J].Mathematical Methods in the Applied Sci-ences,2014,37(3) ;321-328.
  • 9Matheny M H,Grau M, Villanueva L G,et al. Phasesynchronization of two anharmonic nanomechanical os-cillators[J].Physical Review Letters, 2014, 112 (1):014101.
  • 10Bouarar T, Marx B, Maquin D,et al. Fault-tolerantcontrol design for uncertain Takagi-Sugeno systems bytrajectory tracking: A descriptor approach [J].IETControl Theory & Applications, 2013, 7 ( 14 ) ; 1793-1805.

引证文献29

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部