期刊文献+

Projective spectrum and kernel bundle 被引量:2

Projective spectrum and kernel bundle
原文传递
导出
摘要 For a tuple A = (A1, A2,..., An) of elements in a unital algebra/3 over C, its projective spectrum P(A) or p(A) is the collection of z ∈ Cn, or respectively z ∈ pn-1 such that A(z) = z1A1+z2A2+…+znAn is not invertible in/3. The first half of this paper proves that if/3 is Banach then the resolvent set PC(A) consists of domains of holomorphy. The second half computes the projective spectrum for the generating vectors of a Clifford algebra. The Chern character of an associated kernel bundle is shown to be nontrivial. For a tuple A=(A_1,A_2,…,A_n) of elements in a unital algebra B over C,its projective spectrum P(A) or p(A) is the collection of z∈C^n,or respectively z∈P^(n-1),such that A(z)=z_1A_1+z_2A_2+…+z_nA_n is not invertible in Β.The first half of this paper proves that if B is Banach then the resolvent set P^c(A) consists of domains of holomorphy.The second half computes the projective spectrum for the generating vectors of a Clifford algebra.The Chern character of an associated kernel bundle is shown to be nontrivial.
出处 《Science China Mathematics》 SCIE CSCD 2015年第11期2363-2372,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11101079)and China Scholarship Council
关键词 projective spectrum domain of holomorphy Clifford algebra kernel bundle Chern character 投射 生成向量 单位元 不可逆 正则性 巴拿赫 代数 证明
  • 相关文献

参考文献18

  • 1Andersson M, Sj6strand J. Punctional calculus for non-commuting operators with real spectra via an iterated Cauchy formula. J Punct Anal, 2004, 210:341-375.
  • 2Atkinson F V. Multiparameter Eigenvalue Problems. Volume I: Matrices and Compact Operators. New York-London: Academic Press, 1972.
  • 3Bannon J P, Cade P, Yang R. On the spectrum of Banaeh algebra-valued entire functions. Illinois J Math, 2011, 55: 1455-1465.
  • 4Cade P, Yang R. Projective spectrum and cyclic cohomology. J Funet Anal, 2013, 265:1916-1933.
  • 5Chagouel I, Stessin M, Zhu K. Geometric spectral theory for compact operators. ArXiv:1309.4375v1, 2013.
  • 6Feynman R. An operator calculus having applications in quantum electrodynamics. Phys Rev, 1951, 84:108 128.
  • 7Hartshorne R. Algebraic Geometry. New York-Heidelberg: Springer, 1977.
  • 8Jefferies B. Spectral Properties of Noncommuting Operators. Berlin: Springer-Verlag, 2004.
  • 9Krantz S G. Punction Theory of Several Complex Variables. Providence, RI: Amer Math Soc Chelsea Publishing, 2001.
  • 10Marcus A, Spielman D, Srivastava N. Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem. ArXiv:1306.3969v4, 2014.

同被引文献4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部