期刊文献+

逼近辅助关系与伪测度拓扑 被引量:1

Approximating Auxiliary Relations and the Pseudo-measurement Topology
原文传递
导出
摘要 在具有辅助关系的偏序集上引入伪测度拓扑,研究其性质以及与其它内蕴拓扑的关系。主要结果有:(1)具有逼近辅助关系的偏序集上的伪测度拓扑是零维的;(2)具有辅助关系的偏序集有可数辅助基当且仅当其上的伪测度拓扑是可分的;(3)具有逼近辅助关系的偏序集是可数集当且仅当其上的伪测度拓扑是可分可度量化的。 The new concept of the pseudo-measurement topology on posets with auxiliary relations is introduced. Some basic properties of the pseudo-measurement topology and relations with other intrinsic topologies are given. The main results are: (1) the pseudo-measurement topology on a poset with an approximating auxiliary relation is zero-d{mensional; (2) a poser with an auxiliary relation has a countable auxiliary basis iff its pseudo-measurement topology is separable; (3) a poset with an approximating auxiliary relation is countable iff its pseudo-measurement topology is separable and metrizable.
出处 《模糊系统与数学》 CSCD 北大核心 2015年第4期76-79,共4页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11101212 61103018)
关键词 抽象基 伪Scott拓扑 逼近辅助关系 伪测度拓扑 Abstract Basis Pseudo-Scott Topology Approximating Auxiliary Relation Pseudo- measurement Topology
  • 相关文献

参考文献8

  • 1Gierz G,et al. Continuous lattices and domains[M]. Cambridge University Press,2003.
  • 2Lawson J D. The round ideal completion via sobrification[J]. Topology Proceedings,1997,22:261 -274.
  • 3Xu L S. Continuity of posets via scott topology and sobrification[J]. Topology and Its Applications, 2006 -153:1886-1894.
  • 4Martin K. A foundation for computation[D]. Tulane University, 2000.
  • 5徐罗山.偏序集上的测度拓扑和全测度[J].模糊系统与数学,2007,21(1):28-35. 被引量:7
  • 6徐菲,徐晓泉.伪Scott拓扑与伪Scott开滤子[J].模糊系统与数学,2009,23(3):95-98. 被引量:2
  • 7Engelking R. General topology[M]. Warzawa:Polish Scientific Publishers, 1977.
  • 8Waszkiewiz P. Distance and measurement in domain theory [J]. Electronic Notes in Theoretical Computer Science,2001,45:448-462.

二级参考文献20

  • 1Ambrasky S, Jung A. Domain theory[Z]. Handbook of Logic in Computer Science(Vol. 3)[Z]. Clarendon Press, 1995.
  • 2Lawson J D. The round ideal completion viasobrification[J]. Topology Proc. , 1997,22 : 261-274.
  • 3Gierz G, et al. Continuous lattices and domains[M]. Cambridge University Press,2003.
  • 4Xu L S. Continuity of posets via Scott topology and sobrification[J]. Topology and Its Applications,2006,153:1886-1894.
  • 5XuXQ.Continuity of the Scott open filter topology.江西师范大学学报,1998,22:97-100.
  • 6Engelking R. General topology[M]. Warszawa,1977.
  • 7Scott D S. Continuous lattices[Z]. Springer-Verlag,Lecture Notes in Mathematics,1972,274:97~136.
  • 8Gierz G,et al. A compendium of continuous lattices[M]. Springer-Verlag,1980.
  • 9Gierz G,et al. Continuous lattices and domains[M]. Cambrige University Press,2003.
  • 10Abramsky S,June A. Domain theory[A]. Abramsky S,et al. Handbook of logic in computer science(volume 3)[C]. Clarendon Press, 1995:1~ 168.

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部