期刊文献+

带有混合约束的特殊三次规划问题的全局最优性充分条件 被引量:1

The Global Optimal Sufficient Conditions for a Special Cubic Minimization Problem with Mixed Constrains
下载PDF
导出
摘要 利用拉格朗日函数和L-次微分的方法,研究了带有双值和不等式约束的特殊三次规划问题的全局最优性充分条件;首先刻画出该类三次规划问题的拉格朗日函数的抽象次微分,得到了特殊三次规划问题的全局最优性充分条件;然后,举例说明利用所给出的全局最优性充分条件判定当前可行解就是全局最优解是有效的. By employing Lagrangian function and L-subdifferential approach,the global optimal sufficient conditions for a class of cubic programming problem involving bivalent and inequality constrains is researched.Firstly,the abstract subdifferential for Lagrangian function of the class of cubic programming problems is calculated explicitly.Then some global optimal sufficient conditions for cubic programming problem with bivalent and inequality constrains are obtained.Finally,some examples are given to illustrate the optimality conditions.
作者 周莉 李国权
出处 《重庆工商大学学报(自然科学版)》 2015年第9期16-19,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 三次规划 拉格朗日函数 L-次微分 全局最优性充分条件 cubic program Lagrangian function L-subdifferential global optimal sufficient conditions
  • 相关文献

参考文献10

  • 1CANFIED R A.Multipoint Cubic Surrogate Function for Sequential Approximate Optimization [ J ] .Structural and Multidisciplinary Optimization, 2004 (27) : 326-336.
  • 2NESTEROV Y.Aecelerrating the Cubic Regularization of Newton's Method On Convex Problem [ J ].Mathematical Programming, 2008,12( 1 ) : 159-181.
  • 3LIN C S , CHANG P R, LUTH J Y S. Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots [ J ]. IEEE Transaction on Automatie Control, 1983,28 (12) : 1066-1074.
  • 4WU Z Y,YANG Y J, BAI F S, et al.Necessary Optimality Conditions and Optimization Methods for Quadratic Knapsack Problem [ J ]. Journal of Optimization Theory and Applications, 2011 ( 151 ) : 241-259.
  • 5ZHANG X M, WANG Y J, MAW M. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem [ J ]. Mathematical Problems in Engineering,2012(2012) :1-16.
  • 6周雪刚.具有超矩形约束的三次规划的全局最优性条件[J].重庆师范大学学报(自然科学版),2014,31(4):21-25. 被引量:2
  • 7WANG Y J, LIANG Z A.Global Optimality Conditions for Cubic Minimization Problem with Box or Binary Constraints [ J] .Journal of Global Optimization,2010(47) :583-595.
  • 8WU Z Y,JEYAKUMAR V,RUBINOV A M.Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints [ J ] .Journal of Optimization Theory and Applications, 2007 ( 133 ) :123-130.
  • 9张甲,田志远,李敬玉.一类非凸二次规划问题的全局最优性条件[J].青岛大学学报(自然科学版),2010,23(3):20-23. 被引量:5
  • 10李国权,吴至友.带有二次约束的一些非凸二次规划问题的全局最优性条件[J].重庆师范大学学报(自然科学版),2008,25(3):1-4. 被引量:10

二级参考文献28

  • 1王丽.一类非光滑广义凸多目标规划的最优性条件[J].西南师范大学学报(自然科学版),2005,30(1):41-46. 被引量:6
  • 2吴至友,白富生.一种新的求全局优化最优性条件的方法[J].重庆师范大学学报(自然科学版),2006,23(1):1-5. 被引量:9
  • 3Jeyakumar V,Rubinov A M,Wu Z Y.Sufficient Global Optimality Conditions for Nonconvex Quadratic Minimization Problems with Box Constraints[J].J Global Optim 2006,36(3):471-481.
  • 4Wu Z Y,Jeyakumar V,Rubinov A M.Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs ith Inequality Constraints[J].J Optim Theory Appl,2007,133:123-130.
  • 5Jeyakumar V,Rubinov A M,Wu Z Y.Nonconvex Quadratic Minimization Problems with Quadratic Constrains:Global Optimality Conditions[J].Math Program,2007,110(3):521-541.
  • 6Rubinov A M.Abstract Convexity and Global Optimization[M].Dordrechet:Kluwer Academic Publishers,2000,.
  • 7BACK A,TEBOULIE M.Global Optimality Conditions for Quadratic Optimization Problems with Binary Constraints[J].SIAM J Potim,2000(11):179-188.
  • 8DUR M,HORST R,LOCAELLI M.Necessary and Sufficient Global Optimality Conditions for Convex Maximization Revisited[J].J Math Appl,1998,217(2):637-649.
  • 9HIRIART-URRUTY J B.Conditions for Global Optimality 2[J].J Global Optim,1998,13:349-367.
  • 10HorstR PardalosPM 黄红选 译.全局优化引论[M].北京:清华大学出版社,2003..

共引文献12

同被引文献12

  • 1HENIN C,DOUTRIAU J.A specialization of the convex simplex method to cubic programming[J].Decis Econ Finance,1980,3:61-72.
  • 2HANOCH G,LEVY H.Efficient portfolio with quadratic and cubic utility[J].J Bus,1970,43:181-189.
  • 3Levy H,Sarnat M.Investment and portfolio analysis[M].New York:Wiley,1972.
  • 4WU Z Y,YANG Y J,BAI F S,et al.Global optimality conditions and optimization oethods for quadratic knapsack problem[J].Journal of Optimization Theory and Applications,2011,151(2):241-259.
  • 5LI G Q,WU Z Y,uan J.A new local and global optimization method for mixed integer quadratic programming problems[J].Applied Mathematics and Computation,2010,217(6):2501-2512.
  • 6WU Z Y,LI G Q,Quan J.Global optimality conditions and optimization methods for quadratic integer programming problems[J].Journal of Global Optimization,2011,51:549-568.
  • 7WU Z Y,JEYAKUMAR V,Rubinov A M.Sufficient conditions for global optimality of bivalent nonconvex quadratic programs with inequality constraints[J].Journal of Optimization Theory and Applications,2007,133:123-130.
  • 8WANG Y J,LIANG Z A.Global optimality conditions for cubic minimization problem with box or binary constraints[J].Journal of Global Optimization,2010,47:583-595.
  • 9ZHANG X M,WANG Y J,Ma W M.Global sufficient optimality conditions for a special cubic minimization problem[J].Mathematical Problems in Engineering,2012,3(7):178-192.
  • 10叶敏,李国权.带有二次约束的一类特殊三次规划问题的全局最优性充分条件[J].重庆师范大学学报(自然科学版),2014,31(3):17-20. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部