期刊文献+

网络GIS中最佳负载均衡的分布式缓存副本策略 被引量:3

A Replication Strategy Based on Optimal Load Balancing for a Heterogeneous Distributed Caching System in Networked GISs
原文传递
导出
摘要 云环境下的网络地理信息服务具有分布性和异构性,空间数据(瓦片)的访问请求具有高度聚集性和不均匀性。以最小化负载不均衡度为目标,提出了一种应用于异构的、分布式高速缓存集群系统的多副本策略。该策略针对瓦片访问请求存在不均衡性,最小化热点访问数据的通信权重值,最大化地利用分布式集群缓存能力生成副本;针对异构集群环境下服务器处理能力的不均衡性,根据服务器性能和瓦片副本的通信权重值,匹配各个服务器的缓存能力部署副本。实验证明,该策略避免服务器拥塞的同时,能充分利用有限的分布式集群缓存能力,实现较好的负载均衡和较高的资源利用率,并能获得良好的缓存命中和请求响应性能。 Networked geospatial information services in cloud-based environments are distributed and heterogeneous;accesses to geospatial data(tiles)are uneven and has the feature of a high degree of aggregation.Aiming to minimize the degree of load imbalance,this paper proposes a replication strategy for a heterogeneous distributed high-speed cluster-based caching system.First,taking into account the unbalanced accesses to tiles,it minimizes the weighted communication values of hotspot tiles,and generates the maximum number of replicas based on the total cache capability of the distributed cluster-based caching system.Then,since each server has a different processing capacity in the heterogeneous system,the strategy places the replicas based on the service performance of each caching server and the weighted communication value of each replica,thus matching the cache capacity of each server.Experimental results reveal that the proposed strategy can avoid server congestion while fully utilizing limited cache capacity to achieve a better load balancing and a high resource utilization,delivering good response performance and a high cache hit rate.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第10期1287-1293,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41371370) 国家高技术发展研究计划(863计划)资助项目(2012AA12Z401)~~
关键词 负载均衡 集群 异构 缓存 服务质量 load balancing cluster heterogeneous cache QoS
  • 引文网络
  • 相关文献

参考文献10

  • 1吴华意,章汉武.地理信息服务质量(QoGIS):概念和研究框架[J].武汉大学学报(信息科学版),2007,32(5):385-388. 被引量:28
  • 2娄书荣,孟令奎,方军,夏辉宇.基于对等网络的多分辨率影像的网络传输模型[J].测绘学报,2011,40(5):628-634. 被引量:4
  • 3Serpanos D N. MMPacking: A Load and StorageBalancing Algorithm for Distributed MultimediaServers CJ 3- IEEE Transactions on Circuits andSystems for Video Technology , 1998 , 8(1):13-17.
  • 4Dukes J,Jones J. Dynamic Repacking: A ContentReplication Policy for Clustered Multimedia Servers[R]. Trinity College Dublin Computer Science De-partment Technical Reports,Cambridge,UK,2002.
  • 5Ibarkai T,Katoh N. Resource Allocation Prob-lem—Algorithmic Approaches [M] . MassachusettsUnited States:The MIT Press, 1988.
  • 6Zhou Xiaobo,Xu Chenzhong. Optimal Video Repli-cation and Placement on a Cluster of Video-on-De-mand Servers [C]. The 2002 International Confer-ence on Parallel Processing, IEEE Computer Socie-ty, Washington D C, USA, 2002.
  • 7Dan A, Sitaram D. An Online Video Placement Poli-cy Based on Bandwidth to Space Ratio (BSR) [C].ACM SIGMOD,95,New York,USA,1995.
  • 8Fisher D. Hotmap j Looking at Geographic Atten-tion[J], IEEE Transactions on Visualization andComputer Graphics .2007 ,13(6) ;1 184-1 191.
  • 9王浩,潘少明,彭敏,李锐.数字地球中影像数据的Zipf-like访问分布及应用分析[J].武汉大学学报(信息科学版),2010,35(3):356-359. 被引量:8
  • 10Li Rui, Zhang Yinfeng, Xu Zhengquan, et al. ALoad-balancing Method for Network GISs in a Het-erogeneous Cluster-based System Using AccessDensity[J]. Future Generation Computer Systems ,2013,29(2):528-535.

二级参考文献34

  • 1李浩松,朱欣焰,李京伟,陈军.WebGIS空间数据分布式缓存技术研究[J].武汉大学学报(信息科学版),2005,30(12):1092-1095. 被引量:32
  • 2吴华意,章汉武.地理信息服务质量(QoGIS):概念和研究框架[J].武汉大学学报(信息科学版),2007,32(5):385-388. 被引量:28
  • 3Shekhar S, Ravada S, Chubb D, et al. Declustering and Load-Balancing Methods for Parallelizing Geographic Information Systems [ J]. IEEE Transactions on Knowledge and Data Engineering, 1998, 10 (4) :632-655.
  • 4Yang Chaowei, Wong D, Yang Ruixing, et al. Performance-Improving Techniques in Web-Based GIS [J]. International Journal of Geographical Information Science, 2005,19(3) :319-342.
  • 5Fisher D. Hotmap: Looking at Geographic Attention [J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6):1 184-1 191.
  • 6Fisher D. How We Watch the City: Popularity and Online Maps[C]. ACM CHI Workshop on Imaging the City, San Jose, 2007.
  • 7Li Quannan, Zheng Yu, Xie Xing, et al. Mining User Similarity Based on Location History[C]. The 16th ACM GIS, Irvine,California, USA, 2008.
  • 8Krumm J, Horvitz E. Predestination: Where Do You Want to Go Today? [J]. IEEE Computer Magazine, 2007,40(4) :105-107.
  • 9Liao L, Patterson D J, Fox D, et al. Learning and Inferring Transportation Routines[J]. Artificial Intelligence, 2007, 171(5/6) :311-331.
  • 10Bell D G, Kuehnel F, Maxwell C, et al. NASA World Wind: Opensource GIS for Mission Operations[C]. IEEE Aerospace Conference, Big Sky, MT, 2007.

共引文献36

同被引文献23

引证文献3

;
使用帮助 返回顶部