期刊文献+

趋磁细菌动力学分析及细菌机器人的构建 被引量:4

Dynamic Analysis of Magnetotactic Bacteria and Construction of Bacterial Microrobot
原文传递
导出
摘要 利用具有磁场响应特性的趋磁细菌构建了一种趋磁细菌微机器人系统.首先建立了趋磁细菌MO-1的动力学模型,仿真分析了趋磁细菌在不同磁场条件下的运动特性,结果与实验结果吻合.然后,利用兔抗MO-1多克隆抗体与MO-1细胞反应,构建趋磁细菌MO-1机器人,其可借助抗体Fc段的亲和特性与金黄色葡萄球菌连接.通过搭建的磁场控制系统,在微流控芯片中实现了趋磁细菌机器人对金黄色葡萄球菌的捕获与分离.研究结果显示,构建的趋磁细菌机器人系统可以有效实现对特异细菌的分离,在医学检测分析方面将发挥重要的作用. A magnetotactic bacterial microrobot system is fabricated using magnetotactic bacteria with magnetic respon-siveness. Firstly, a dynamic model of magnetotactic bacteria MO-1 is established and the dynamic features of MO-1 cells in different magnetic fields are analyzed through simulation. The simulation results agree with the experimental ones. Then MO-1 cells are coated by rabbit anti-MO-1 polyclonal antibodies to construct MO-1 bacterial microrobots. The microrobots can bind Staphylococcus aureus based on the affinity of Fc fragment of antibody. Staphylococcus aureus can be captured and separated in microfluidic chip by MO-1 microrobots through a fabricated magnetic controlling system. The experimental re-sults show that the magnetotactic bacterial microrobot system constructed here can achieve the separation of Staphylococcus aureus effectively, suggesting its important role in medical detection and analysis.
出处 《机器人》 EI CSCD 北大核心 2015年第5期588-593,共6页 Robot
基金 国家自然科学基金重点项目(51037006)
关键词 细菌机器人 趋磁细菌 动力学模型 金黄色葡萄球菌 分离 bacterial microrbot magnetotactic bacteria dynamic model Staphylococcus aureus separation
  • 相关文献

参考文献2

二级参考文献49

  • 1左建勇,颜国正.基于蚯蚓原理的多节蠕动机器人[J].机器人,2004,26(4):320-324. 被引量:15
  • 2张永顺,李海亮,王惠颖,刘巍,贾振元.超磁致伸缩薄膜驱动仿生游动微型机器人[J].机器人,2006,28(2):170-176. 被引量:11
  • 3白烨,杨明,王秋良,余运佳,刘宏伟.磁导航外科手术模型系统设计和建造[J].北京生物医学工程,2006,25(3):261-264. 被引量:6
  • 4Peirs J, Reynaerts D, Van Brussel H: Design of miniature parallel manipulators for integration in a self-propelling endoscope[J]. Sensors and Actuators, A: Physical, 2000, 85(1): 409-417.
  • 5Hirose S, Cave P, Goulden C. Biologically Inspired Robots: Snake-like Locomotors and Manipulators[M]. NY, USA: Oxford University Press, 1993.
  • 6Honda T, Sakashita T, Narahashi K, et al. Swimming properties of a bending-type magnetic micro-machine[J]. Journal of the Magnetics Society of Japan, 2001, 25(4-2): 1175-1178.
  • 7Guo S X, Fukuda T, Asaka K. A new type of fish-like underwater microrobot[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141.
  • 8Ishiyama K, Sendoh M, Yamazaki A, et al. Swimming micromachine driven by magnetic torque[J]. Sensors and Actuators, A: Physical, 2001, 91(1-2): 141-144.
  • 9Sendoh M, Ishiyama K, Arai K I. Fabrication of magnetic actuator for use in a capsule endoscope[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3232-3234.
  • 10Mei T, Chen Y, Fu G Q, et al. Wireless drive and control of a swimming microrobot[A]. Proceedings of the IEEE Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2002. 1131-1136.

共引文献10

同被引文献15

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部