期刊文献+

随机时滞Lotka-Volterra模型:全局解和随机最终有界性 被引量:1

Stochastic Delay Lotka-Volterra Model:Global Solutions and Stochastically Ultimate Boundedness
下载PDF
导出
摘要 通过讨论一类随机时滞Lotka-Volterra生态模型解的动力行为,利用It公式、Chebyshev不等式,给出该模型全局正解的存在唯一性、随机最终有界性的充分条件,并给出一个数值例子说明了结果的有效性. This paper is concerned with a stochastic delay Lotka-Voltrra model. By using of Ito formula and Chebyshev inequality, some sufficient conditions for existence of global positive solutions, stochastically ultimate boundedness are obtained, respectively. An example is given to illustrate the main result.
作者 王东辉 吴正
出处 《合肥学院学报(自然科学版)》 2015年第4期9-14,共6页 Journal of Hefei University :Natural Sciences
基金 国家教育部博士点专项基金(20113401110001) 安徽省自然科学基金(1308085 MA01 1508085QA01) 安徽省高等学校省级自然科学研究项目(KJ2014A010) 安徽大学博士科研启动经费资助 安徽大学大学生科研训练计划项目(KYXL2012001)资助
关键词 随机微分方程 布朗运动 随机最终有界性 ITO公式 stochastic differential equation brownian motion stochastically ultimateboundedness Ito formula
  • 相关文献

参考文献9

  • 1Ahmad A,Rao M R M. Asymptotically Periodic Solutions of n-competing Species Problem with Time Delay [J]. JMath Anal Appl,1994,186:557-571.
  • 2Bereketoglu H, Gyori I. Global Asymptotic Stability in a Nonautonomous Lotka-Volterra Type System with InfiniteDelay [J], J Math Anal Appl,1997,210:279-291.
  • 3Freedman H I,Ruan S. Uniform Persistence in Functional Differential Equations [J]. Journal of Differential Equations,1995,115:173-192.
  • 4Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M], Boston: Academic Press,1993;50-56.
  • 5Mao X,Marion G, Renshaw E. Environmental Noise Suppresses Explosion in Population Dynamics [J]. StochasticProcess AppU 2002,97:95-110.
  • 6Wu Zheng, Huang Hao,Wang Lianglong. Dynamical Behavior of a Stochastic Ratio-dependent Predator-prey System[J]. Journal of Applied Mathematics ,2012, Article ID 857134.
  • 7Wu Zheng, Huang Hao, Wang Lianglong. Stochastic Delay Logistic Model With Markovian Switching [ J ].International Journal of Information and Systems Sciences,2012,8(2) : 174-180.
  • 8Bahar A, Mao X. Stochastic Delay Lotka-Volterra Model [J]. J Math Anal Appl, 2004,292 : 364-380.
  • 9Higham D J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations [J]. SIAMRev,2001,43:525-546.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部