期刊文献+

上颌窦窦口改变与气流场特征关系的研究 被引量:1

Study on the correlation between the ostia diameter changes and airflow characteristics in maxillary sinus
原文传递
导出
摘要 目的了解上颌窦内气流场和温度场与上颌窦窦口开放大小的关系,为临床手术量化上颌窦窦口开放范围提供参考意见。方法选取1例健康成人女性螺旋CT影像资料,构建鼻腔及上颌窦的三维模型,采用计算流体力学方法,数值模拟研究上颌窦中气流和温度正常分布,了解上颌窦的生理功能;通过模拟上颌窦开放手术,研究随着窦口直径的变化(正常、8mm、10mm、12mm和15mm)上颌窦气流和温度的改变。结果数值模拟发现,上颌窦内气流速度和变化低于鼻腔,上颌窦中的气流速度(平均速度0.062m/s)远低于中鼻道(平均速度3.260m/s);正常上颌窦中的平均温度是34.0℃,明显高于中鼻道内温度(28.7℃);随着窦口直径的增加,上颌窦温度与气流变化不明显。结论通过数值模拟研究证实,上颌窦气流占鼻腔气流的比例很小,窦口的开放对窦内气流及鼻腔气流的影响很小。 Objective To investigate the relationship between the maxillary sinus flow field, temperature field and the maxillary sinus ostium size, and to provide a reference for endoscopic surgery according to the maxillary sinus scope. Methods One case of adult female CT image data was obtained, and used to build a three-dimensional model of nasal cavity and maxillary sinus. Computational fluid dynamics method was used to study the airflow and temperature of the maxillary sinus, as well as the physiological function of the maxillary sinus. Simulation surgery by means of different maxillary sinus diameters ( normal, 8 mm, 10 ram, 12 mm and 15 ram) was used to describe the maxillary sinus airflow and temperature change. Results It was found that by numerical simulation the airflow of maxillary sinus and nasal cavity showed lower speed (average speed 0. 062 m/s) than that in the middle nasal meatus (average speed of 3. 260 m/s) , and the average temperature in the normal maxillary sinus was 34 ℃, which was higher than that in the middle nasal meatus ( temperature 28.7℃ ). With the increase of the diameter of the maxillary sinus, the air temperature change was not obvious. Conclusions The physiological function of the maxillary sinus can be studied through the numerical simulation. With the increase of the ostia diameter of maxillary sinus, the sinus temperature and ventilation is not affected. It provides a reference for quantification of clinical endoscopic maxillary sinus surgery.
出处 《中华耳鼻咽喉头颈外科杂志》 CAS CSCD 北大核心 2015年第10期805-809,共5页 Chinese Journal of Otorhinolaryngology Head and Neck Surgery
关键词 上颌窦 计算机模拟 温度 Maxillary sinus Computer simulation Temperature
  • 相关文献

参考文献12

  • 1Nouraei SA, Elisay AR, Dimarco A, et al. Variations in paranasal sinus anatomy: implications for the pathophysiology of chronic rhinosinusitis and safety of endoscopic sinus surgery [ J ].J Otolaryngol Head Neck Surg, 2009, 38 (1) : 32-37.
  • 2臧洪瑞,刘迎曦,张罗,王彤,李立锋,武骏,韩德民.健康成人60名鼻腔流体力学分析[J].中华耳鼻咽喉头颈外科杂志,2013,48(10):814-817. 被引量:8
  • 3Chen XB, Lee HP, Chong VF, et al. Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model [J]. Laryngoscope, 2009, 119(9): 1730-1736.
  • 4Leong SC, Chen XB, Lee HP, et al. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology [J]. Rhinology, 2010, 48(2) : 139-145.
  • 5Zhu JH, Lee HP, Lim KM, et al. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation [J]. Respir Physiol Neurobiol, 2011, 175 (1) : 62459.
  • 6Ozlugedik S, Nakiboglu G, Sert C, et al. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy [J]. Larvn~oscooe. 2008. 118(2): 330-334.
  • 7刘迎曦,于申,孙秀珍,苏英锋,张军.鼻腔结构形态对鼻腔气流的影响[J].中华耳鼻咽喉头颈外科杂志,2005,40(11):846-849. 被引量:71
  • 8熊观霞,黎建峰,江广理,詹杰民,容亮湾,许庚.流体力学方法测量全鼻窦开放对鼻腔鼻窦气流的影响[J].中华耳鼻咽喉头颈外科杂志,2009,44(11):911-917. 被引量:8
  • 9Lindemann J, Keck T, Wiesmiller K, et al. A numerical simulation of intranasal air temperature during inspiration [J]. Laryngoscope, 2004, 114(6) : 1037-1041.
  • 10Fujikura T, Tanaka N, Sugiura E, et al. Clinical application of virtual endoscopy as a support system for endoscopic sinus surgery [J]. Acta Otolaryngol, 2009, 129(6) : 674-680.

二级参考文献53

  • 1李晓明,卜国铉,郭晓峰.鼻部气道的限流节段[J].中华耳鼻咽喉科杂志,1994,29(1):48-49. 被引量:23
  • 2郑春泉,Poch.,N.鼻声反射测量法(鼻中隔矫正术前后对比)[J].中华耳鼻咽喉科杂志,1995,30(6):343-346. 被引量:12
  • 3刘迎曦,于申,孙秀珍,苏英锋,张军.鼻腔结构形态对鼻腔气流的影响[J].中华耳鼻咽喉头颈外科杂志,2005,40(11):846-849. 被引量:71
  • 4lshikawa S, Nakayama T, Watanabe M, et al. Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg, 2006, 132: 1203-1209.
  • 5Croce C, Fodil R, Durand M, et al. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng, 2006, 34: 997-1007.
  • 6Cant S. High-performance computing in computational fluid dynamics: progress and challenges. Philos Transact A Math Phys Eng Sc, 2002, 360: 1211-1225.
  • 7Wang K, Denney TS Jr, Morrison EE, et al. Numerical simulation of air flow in the human nasal cavity. Conf Proc IEEE Eng Med Biol Soc, 2005, 6: 5607-5610.
  • 8Chung SK, Son YR, Shin S J, et al. Nasal airflow during respiratory cycle. Am J Rhinol, 2006, 20 : 379-384.
  • 9Kim JK, Yoon JH, Kim CH, et al. Particle image velocimetry measurements for the study of nasal airflow. Acta Otolaryngol, 2006, 126: 282-287.
  • 10Xiong GX, Zhan JM, Jiang HY, et al. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol, 2008, 22 : 477-482.

共引文献84

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部