期刊文献+

基于密集型数据复写的复杂项目增长趋势检测

Complex Projects Increase Detection Algorithm Based on Intensive Data Replication
下载PDF
导出
摘要 在密集型复写的复杂项目环境中,数据具有数量丰富、分布、异构、高速变化、结构或半结构的特点,传统的数据处理方式是把数据全部传输到相应的数据处理节点,无法解决数据密集型计算环境下数据可用性的问题,导致以数据为中心的计算中数据存储与处理、分析与挖掘、增长趋势检测等研究结果相应地发生改变。提出了一种CTDA检测算法,分别对CQAR算法和COPIT算法进行改进,将两算法合并,使其有效解决数据密集型计算环境下的数据分析挖掘及增长趋势检测。算法性能测试结果表明,CTDA检测算法,提高了算法的精准度,可对基于密集型数据复写的复杂项目增长趋势作出合理的检测。 In the complex project environment, to intensive data has a number of rich, distributed, heterogeneous, high speed changes, the characteristics of the structure or structure, traditional way of data processing is transmitting all the data to the corresponding data processing node, unable to solve the data intensive computing environment data usability prob-lems, causing a data-centric calculation data storage and processing, analysis and mining, the growth trend of test results such as the corresponding change. A CTDA detection algorithm is proposed in this paper, to improve the CQAR algorithm and COPIT algorithm respectively, merge the two algorithm, make it effective to solve data intensive computing environ-ment analysis of data mining and the growing trend detection. Algorithm performance test results show that CTDA detection algorithm, improve the precision of the algorithm, based on intensive data to autotype reasonable complex project growth trend of detection.
作者 陈红霞
出处 《科技通报》 北大核心 2015年第10期52-54,共3页 Bulletin of Science and Technology
基金 广西教育厅区级项目(<基于Microsoft Project的计算机技术在建筑项目风险管理中的应用> 广西教育厅2013年度广西高校科学技术研究项目(2013LX211)
关键词 密集型数据 聚类 门限 intensive data clustering threshold
  • 相关文献

参考文献5

  • 1岳峰,邱保志.基于反向K近邻的孤立点检测算法[J].计算机工程与应用,2007,43(7):182-184. 被引量:8
  • 2Wu H, Soh LK, Samal A, Chen XH. Trend analysis ofstream flow drought events in Nebraska[J].Water ResourManage, 2008,(22):145-164.
  • 3李德仁,王树良,史文中,王新洲.论空间数据挖掘和知识发现[J].武汉大学学报(信息科学版),2001,26(6):491-499. 被引量:181
  • 4Jie Lu, Guang quan Zhang. Guest editorial: a special issueon optimization techniques for business intelligence sys.tems[J]. Journal of Global Optimization,2011:185-187.
  • 5Gillick D, Faria A, DeNero J. MapReduce: Distributed com.puting for machine learning[J]. Technique Report, Berkley,2006.

二级参考文献35

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2李德仁,程涛.从GIS数据库中发现知识[J].测绘学报,1995,24(1):37-44. 被引量:62
  • 3范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4Breunig M M,Kriagel H P,Ng R T,et al.LOF:identifying densitybased local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data,Dallas,Texas,USA,2000:93-104.
  • 5Xia Chen-yi,Hsu W,Lee M L,et al.BODER:efficient computation of boundary points[J].IEEE Transaction on Knowledge and Data Engineering,2006 (18).
  • 6Ertoz L,Steinbach M,Kumar V.Finding clusters of different sizes,shapes,and densities in noisy,high dimensional data[C]//2nd SIAM International Conference on Data Mining,SDM 2002 IAM Press:SDM2003,2003:1-12.
  • 7Hsu Chih-ming,Chen Ming-syan.Subspace clustering of high dimensional spatial data with noises[C]//Advances in Knowledge Discovery and Data Mining.8th Pacific-Asia Conference,PAKDD 2004.Heidlberg,Germany:Springer,2004:31-40.
  • 8Korn F,Muthukrishna S.Influence sets based on reverse nearest neighbors queries[C]//Proceedings of ACM SIGMOD,2000:201-212.
  • 9乔颖,须德.多重粒度数据仓库的存储新策略[J].北方交通大学学报,1997,21(6):684-689. 被引量:3
  • 10邸凯昌,李德仁,李德毅.空间数据发掘和知识发现的框架[J].武汉测绘科技大学学报,1997,22(4):328-332. 被引量:60

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部