期刊文献+

大型数据库的混沌倍周期分岔普适调度算法 被引量:4

Chaotic Period Doubling Bifurcation Optimal General Scheduling Algorithm of Large Database
下载PDF
导出
摘要 研究大型流媒体数据库的普适性调度问题,提高对数据库的优化访问和数据调度能力。传统方法采用遗传进化算法进行大型流媒体数据库的数据调度,数据库中海量信息流的分岔高维矢量特征不能得到有效利用,导致调度性能不好。提出一种基于混沌倍周期分岔的大型流媒体数据库普适调度算法,设计双态平稳的混沌倍周期分岔流媒体数据库调度模型,设置复激活函数,按实部和虚部分路对流媒体大数据库进行普适调度,提高数据库访问能力。仿真实验结果表明,该算法能有效提高流媒体数据调度数据吞吐量和调度成功率,普适性较好。 The study of large-scale streaming media database universal scheduling problem, improve the optimization of ac-cess and data scheduling capabilities in the database. The traditional method of data scheduling using genetic evolutionary algorithm for large-scale streaming media database, a mass of information flow in the database bifurcation of high dimen-sional vector feature cannot be utilized effectively, leading to the scheduling performance is not good. Put forward a kind of adaptive scheduling algorithm for large-scale streaming media database based on general chaotic period doubling bifurca-tion, chaotic times cycle design two-state stationary bifurcation flow media database scheduling model, set the complex acti-vation function, general according to the real and imaginary part of the convection media database suitable shunt schedul-ing, improve database access ability. Simulation results show that, this algorithm can improve the data throughput of stream-ing media data scheduling and the scheduling success ratio, good universal.
作者 何保锋 姜斌
出处 《科技通报》 北大核心 2015年第10期76-78,共3页 Bulletin of Science and Technology
基金 河南省科技厅科技攻关项目(142102210500) 郑州大学西亚斯国际学院"信息管理与信息系统"重点专业建设项目
关键词 大型数据库 混沌 倍周期分岔 调度 large database chaos period doubling bifurcation scheduling
  • 相关文献

参考文献5

二级参考文献15

  • 1俞善贤.神经网络和预报集成的若干问题及其对策[J].科技通报,2006,22(2):159-164. 被引量:1
  • 2Frison T W, Abarbanel H D I. Chaos in Ocean Ambient Noise. Journal of Acoustical Society of America, 19960 99(3):1527-1539.
  • 3Frison T W, Abarbanel H D I. Chaos and Predictability in Ocean Water Level Measurements. Journal of Geophysical Review-Ocean, 19990 104(4): 7935-7951.
  • 4Grebogi C, Ott E, Yorke J A. Unstable Periodic Orbits and the Dimensions of Multi-Fractal Chaotic Attractors. Phys Rev A, 1988, 37(5):1711-1725.
  • 5Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20:273-297.
  • 6Zhou Z H, Jiang Y.NeC4.5: neural ensemble based C4.5 [J]. Knowledge and Data Engineering, 2004 , 16 (6) : 770-773.
  • 7Blake C, Keogh E, Merz C J. UCI repository of machine learning databases. [EB/OL] [http://www.ics.uci.edu/- mlearrdMLRepository.html], Department of Information and Computer Science, University of California, Irvine, CA, 1998.
  • 8Schapire R. E.. The strength of weak learnability[J]. Ma- chine Learning, 1990,5 (2) : 197-227.
  • 9Friedman L.. Bagging predictors [J], Machine Learning , 1996,24(2) : 123-140.
  • 10Zhou Z H, Wu J X, Tang W.Ensemble neural networks: Many could be better than all [J]. Artificial Intelligence , 2002,137 (1-2) : 239-263.

共引文献83

同被引文献37

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部