摘要
研究大型流媒体数据库的普适性调度问题,提高对数据库的优化访问和数据调度能力。传统方法采用遗传进化算法进行大型流媒体数据库的数据调度,数据库中海量信息流的分岔高维矢量特征不能得到有效利用,导致调度性能不好。提出一种基于混沌倍周期分岔的大型流媒体数据库普适调度算法,设计双态平稳的混沌倍周期分岔流媒体数据库调度模型,设置复激活函数,按实部和虚部分路对流媒体大数据库进行普适调度,提高数据库访问能力。仿真实验结果表明,该算法能有效提高流媒体数据调度数据吞吐量和调度成功率,普适性较好。
The study of large-scale streaming media database universal scheduling problem, improve the optimization of ac-cess and data scheduling capabilities in the database. The traditional method of data scheduling using genetic evolutionary algorithm for large-scale streaming media database, a mass of information flow in the database bifurcation of high dimen-sional vector feature cannot be utilized effectively, leading to the scheduling performance is not good. Put forward a kind of adaptive scheduling algorithm for large-scale streaming media database based on general chaotic period doubling bifurca-tion, chaotic times cycle design two-state stationary bifurcation flow media database scheduling model, set the complex acti-vation function, general according to the real and imaginary part of the convection media database suitable shunt schedul-ing, improve database access ability. Simulation results show that, this algorithm can improve the data throughput of stream-ing media data scheduling and the scheduling success ratio, good universal.
出处
《科技通报》
北大核心
2015年第10期76-78,共3页
Bulletin of Science and Technology
基金
河南省科技厅科技攻关项目(142102210500)
郑州大学西亚斯国际学院"信息管理与信息系统"重点专业建设项目
关键词
大型数据库
混沌
倍周期分岔
调度
large database
chaos
period doubling bifurcation
scheduling