期刊文献+

快速启发式ESOP电路面积优化算法 被引量:3

Fast Heuristic Area Optimization Algorithm for ESOP Circuits
下载PDF
导出
摘要 针对积之异或和(ESOP)电路面积优化的时间效率问题,提出一种快速的启发式算法.该算法使用多输出立方体表示乘积项,首先由基于伪Kronecker判决图的方法得到初始ESOP覆盖,然后使用启发式局部极性转换与局部变换交替迭代的方式进行面积优化.为提高算法效率,启发式局部极性转换仅尝试改变立方体中单个变量的极性,并且仅接受对减少电路面积有帮助的极性转换,该转换有助于使优化过程跳出局部极小;局部变换则通过对ESOP覆盖中距离为1或2的立方体进行变形来减少电路面积,该变换有助于算法的收敛.实验结果表明,文中算法能够适用于具有较多输入变量的多输出电路;与MPRM电路相比,ESOP电路能够降低电路面积开销;与其他ESOP电路优化算法相比,该算法能够显著改善面积优化的时间效率. A fast heuristic algorithm is proposed to reduce the time consumed by area optimization of exclu-sive-or sum-of-product (ESOP) circuits. The proposed algorithm uses multi-output cubes to represent prod-uct terms, it first obtains an initial ESOP cover by using pseudo Kronecker decision diagram based approach, and then iteratively applies heuristic local polarity conversion and local transformation to optimize ESOP. In order to improve the algorithm efficiency, heuristic local polarity conversion only attempts to change the polarity of one variable in cubes, and only accepts the changes that can reduce the area, it helps the algo-rithm to escape from local minima. Local transformation reduces the area by reshaping cubes with distance of one or two, and helps the algorithm to converge. Experimental results show that, the proposed algorithm can be applied to multi-output circuits with very large number of input variables. In comparison with MPRM circuits, ESOP circuits can reduce the area overhead. In comparison with other area optimization algorithms for ESOP circuits, the proposed algorithm can significantly improve the time efficiency.
作者 卜登立
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第11期2161-2168,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 江西省自然科学基金计划(20122BAB201038) 江西省青年科学基金计划(20122BAB216030) 江西省教育厅科技计划项目(GJJ13538)
关键词 Reed-Muller逻辑 ESOP电路 面积优化 局部极性转换 局部变换 启发式方法 Reed-Muller logic ESOP circuits area optimization local polarity conversion local transformation heuristic method
  • 相关文献

参考文献14

  • 1汪鹏君,汪迪生,蒋志迪,张会红.基于PSGA算法的ISFPRM电路面积与功耗优化[J].电子学报,2013,41(8):1542-1548. 被引量:11
  • 2卜登立,江建慧.使用系数矩阵变换极性转换的MPRM电路面积优化[J].计算机辅助设计与图形学学报,2013,25(1):126-135. 被引量:10
  • 3Rahaman H, Das D K, Bhattacharya B B. Testable design ofAND-EXOR logic networks with universal test sets[J]. Computers& Electrical Engineering, 2009, 35(5): 644-658.
  • 4Al-Jassani B A, Urquhart N, Almaini A E A. Manipulation andoptimisation techniques for Boolean logic[J]. IET Computers &Digital Techniques, 2010, 4(3): 227-239.
  • 5卜登立,江建慧.基于混合多值离散粒子群优化的混合极性Reed-Muller最小化算法[J].电子与信息学报,2013,35(2):361-367. 被引量:11
  • 6Yu H Z, Wang P J, Wang D S, et al. Discrete ternary particleswarm optimization for area optimization of MPRM circuits[J].Journal of Semiconductors, 2013, 34(2): Article No. 025011.
  • 7Jiang Z D, Wang Z H, Wang P J. Delay-area trade-off forMPRM circuits based on hybrid discrete particle swarm optimization[J]. Journal of Semiconductors, 2013, 34(6): ArticleNo. 065007.
  • 8王伦耀,夏银水,陈偕雄.基于多数覆盖的二级MPRM函数逻辑优化[J].电子与信息学报,2012,34(4):986-991. 被引量:6
  • 9Mishchenko A, Perkowski M. Fast heuristic minimization ofexclusive-sums-of-products[OL]. [2014-10-27]. http://www. eecs.berkeley. edu/-alanmi/publications/2001/rm01_heu.pdf.
  • 10Stergiou S, Daskalakis K, Papakonstantinou G. A fast and efficientheuristic ESOP minimization algorithm[C] //Proceedingsof the 14th ACM Great Lakes Symposium on VLSI. New York:ACM Press, 2004: 78-81.

二级参考文献43

  • 1夏银水,王伦耀,周宗刚,叶锡恩,胡建平,A E A Almaini.Novel Synthesis and Optimization of Multi-Level Mixed Polarity Reed-Muller Functions[J].Journal of Computer Science & Technology,2005,20(6):895-900. 被引量:8
  • 2Tan E C, Yang H. Optimization of fixed-polarity Reed- Muller circuits using dual-polarity property [J]. Circuits, Systems, and Signal Processing, 2000, 19(6): 535-548.
  • 3Habib M K. Efficient and fast algorithm to generate minimal Reed-Muller exclusive-OR expansions with mixed polarity for completely and incompletely specified functions and its computer implementation [J]. Computers & Electrical Engineering, 1993, 19(3):193-211.
  • 4Habib M K. A new approach to generate fixed-polarity Reed- Muller expansions for completely and incompletely specified functions [J]. International Journal of Electronics, 2002, 89 (11) : 845-876.
  • 5Rahaman H, Das D K, Bhattacharya B B. Testable design of AND-EXOR logic networks with universal test sets [J]. Computers & Electrical Engineering, 2009, 35(5):644-658.
  • 6Wang L, Almaini A E A. Optimisation of Reed-Muller PLA implementations [J]. IEE Proceedings Circuits, Devices and Systems, 2002, 149(2): 119-128.
  • 7Dill K M, Perkowski M A. Baldwinian learning utilizing genetic and heuristic algorithms for logic synthesis and minimization of incompletely specified data with generalized Reed-Muller (AND-EXOR) forms [J]. Journal of Systems Architecture, 2001, 47(6): 477-489.
  • 8A1Jassani B A, Urquhart N, Almaini A E A. Manipulation and optimisation techniques for Boolean logic[J]. IET Computers & Digital Techniques, 2010, 4(3): 227-239.
  • 9Wang L, Almaini A E A. Exact minimisation of largemultiple output FPRM functions [J].IEE Proceedings Computers and Digital Techniques, 2002, 149(5): 203-212.
  • 10Green D H. Reed-Muller canonical forms with mixed polarity and their manipulations[J]. IEE Proceedings Computers and Digital Techniques, 1990, 137(1): 103-113.

共引文献28

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部