摘要
当前的人体运动无损压缩方法多是将人体姿态放入一个前后连续的预测空间,使得当需要某一姿态时必须将其前预测空间的姿态全部处理完成,增加了解压时间和内存占用.针对这一问题,提出一种预测器级可随机存取预测的人体姿态数据无损压缩方法.该方法将组织良好的人体姿态集作为处理对象,首先采用两步的聚类方法分层对人体动作及姿态进行归类整理,整理后将相似的人体姿态聚集到一个数据预测空间;然后提出一个带参的均值预测器对聚集姿态集中的当前姿态进行预测;最后采用熵编码算法对预测值和真实值之间差值进行压缩编码,得到压缩后的精简数据.实验结果表明,文中方法在解压缩时间及压缩比方面优于传统的方法;在人体动画,虚拟现实等需要实时获取精确运动数据的应用中具有广泛应用前景.
In current lossless compression methods, poses are usually encoded in a highly correlated space. Before current pose is decompressed, all poses related with it have to be processed. This will cost more de-compression time and memory. In this paper, we propose a lossless pose compression method based on ran-dom access predictor. In our method, we compress well-organized poses. Firstly, the motion database is pre-processed by using a two step clustering process. After this process, similar poses are put together into one specific prediction space, ready for predicting and encoding. Secondly, a specially designed average predic-tor with quantized parameters is proposed to predict each pose independent of other poses. Finally, entropy encoding is introduced to compress the difference between the predicted value and the real value. Compared with previous lossless compression methods, we achieve higher compression ratio and better decompression time. The proposed lossless compression method can be widely used in character animation and virtual real-ity, where users normally demand high quality motion in real-time.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2015年第11期2222-2229,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61300089
61332017)
文化部科技创新项目(2014KJCXXM12)
中国博士后基金(2014M561228)
辽宁省博士启动基金(20131023)
辽宁省教育厅科学研究项目(L2013502)
腾讯犀牛鸟创意基金(AGR20140101)
浙江大学CAD&CG国家重点实验室开放课题(A1421)
中央高校自主基金(DC201502030301)
关键词
运动捕获
无损压缩
角色动画
预测器
姿态压缩
motion capture
lossless compression
character animation
predictor
pose compression