期刊文献+

水土耦合对盾构土拱效应及最小支护力的影响分析 被引量:6

Analysis of Effects of Soil and Ground Water Coupling on Soil Arching and Minimum Face Pressure in Shield Tunneling
下载PDF
导出
摘要 盾构隧道开挖面最小支护力与开挖面上方土拱效应密切相关。模型试验结果显示,地下水的存在会减小开挖面上方土拱高度;数值计算结果表明,砂土内摩擦角变化是地下水影响土拱高度的主要方式。针对此现象,本文结合楔形体模型对开挖面最小支护力计算方法进行分析,提出计算开挖面最小推力的修正系数,即通过对上方棱柱体受到的侧土压力系数进行修正来体现地下水对开挖面上方土拱效应的影响。分析结果表明:地下水的存在能够减小最小支护力与上覆土压力的比值,有利于土体稳定;在最小支护力计算中需采用饱和砂土的有效内摩擦角,否则将降低开挖面安全系数。 The minimum supporting force of the excavation face is closely related to the soil arching effect above the tunnel face.The results of the model test concluded that the existence of groundwater can reduce the height of the soil arching above the tunnel face.Numerical analysis showed that the change of the internal friction angle of sand was the key factor of ground water affecting soil arch height.In response to this situation,the calculation method of the minimum supporting force of the excavation face was analyzed based on the wedge model.The correction factor for calculating the minimum thrust of excavation face was presented.The lateral earth pressure coefficients of the prism above the wedge were updated to reflect the influence of ground water on the soil arch above the excavation face.The analysis results showed that the existence of groundwater can decrease the ratio of the minimum supporting force and the pressure of the overlying soil,which is beneficial to the stability of the soil.The effective angle of internal friction of saturated sand should be used in the calculation of the minimum supporting force,otherwise the safety factor of excavation face will be lowered.
出处 《铁道学报》 EI CAS CSCD 北大核心 2015年第10期122-128,共7页 Journal of the China Railway Society
关键词 盾构隧道 开挖面稳定 土拱效应 地下水 最小支护力 shield tunneling tunneling face stability soil arching effect ground water the minimum support force
  • 相关文献

参考文献3

二级参考文献41

  • 1朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902. 被引量:114
  • 2黄正荣,朱伟,梁精华,秦建设.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009. 被引量:79
  • 3李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079. 被引量:67
  • 4ATKINSON J H, POTTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Geotechnique, 1997, 27(2): 203 - 215.
  • 5CHAMBON P, CORT'E J E Shallow tunnels in cohesionless soil: Stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148 - 1165.
  • 6MAIR R J, TAYLOR R N. Theme lecture: bored tunnelling in the urban environment[C]// Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 1997:2353 - 2385.
  • 7KAMATA H, MASIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnnelling and Underground Space Technology, 2003, 18(2): 205.
  • 8STERPI D, CIVIDINI A, SAKURAI S, et al. Laboratory model tests and numerical analysis of shallow tunnels[C]// Proceedings of the International Symposium on Eurcok '96 - ISRM, Torino, vol. 1. Rotterdam: Balkema, 1996:689 - 696.
  • 9LI Y, EMERIAULT F, KASTNER R, et al. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2009, 24:472 - 481.
  • 10ANAGNOSTOU G., KOV'ARI K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165 - 174.

共引文献98

同被引文献81

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部