摘要
研究了一类分数阶拉普拉斯方程(-Δ)'u+u=|u|^(2*(s)-2)u+f(x,u),x∈R^N解的存在性问题.其中,2*(s)=2N/(N-2s),N>2s,s∈(0,1),函数f:R^N×R→R对于u次临界增长.运用变分方法建立了方程对称解的存在性定理.
The existence of solutions for the following nonlocal fractional Laplacian equation was studied,(-Δ)'u+u=|u|^(2*(s)-2)u+f(x,u),x∈R^N with critical exponent 2*(s)=2N/(N-2s),N>2s,s∈(0,1). f: R^N× R →R had subcritical growth with respect to u. The existence of symmetry solutions for the equation was obtained by using variational method.
出处
《浙江师范大学学报(自然科学版)》
CAS
2015年第4期379-386,共8页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(11271331)
关键词
分数阶拉普拉斯算子
变分法
临界非线性
对称解
fractional Laplacian
variational method
critical nonlinearity
symmetry solutions