期刊文献+

基于自适应最小竞争窗口的EDCA能源优化 被引量:1

EDCA energy optimization based on adaptive minimum contention window
下载PDF
导出
摘要 通过分析IEEE 802.11 EDCA各优先级竞争窗口对于能源利用率的影响,找出各优先级发送概率和能源利用率的关系。针对最优化最小竞争窗口设置问题,提出一种基于最大化能源利用率求各优先级最优发送概率的算法。在保证每类业务Qo S条件下,首先求出在最大化能源利用率下的最优发送概率,然后根据节点数目和最优发送概率来优化竞争窗口的大小,实现最优最小竞争窗口设置,从而提高能源利用率。仿真结果表明:该算法相对于EDCA在能源利用率方面有较好的表现。 By analyzing the influence of the priority-based service differentiation of IEEE 802. 11 EDCA on energy efficiency, the relationship between each priority transmission probability and ener- gy efficiency is found. In view of optimal minimum contention window setting problem, an algorithm based on maximizing energy efficiency is proposed, which aims to acquire the optimal transmission probability of each priority. In order to guarantee the QoS requirements of each type of service, the algorithm firstly calculates the optimal transmission probability under maximizing energy efficiency. And then, the optimized contention window size is calculated according to the number of nodes and the optimal transmission probability and the optimal minimum contention window setting is achieved, so as to improve energy utilization. Simulation results show that the algorithm has better performance improvement over EDCA in energy efficiency.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第5期1252-1259,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61363067) 广西自然科学基金资助项目(2012GXNSFAA053226)
关键词 IEEE802.11EDCA 竞争窗口 能源利用率 发送概率 IEEE 802. 11EDCA contention window energy efficiency transmission probability
  • 相关文献

参考文献6

二级参考文献66

  • 1李晓峰,鄢楚平.一种基于IEEE802.11的无线自组网MAC协议[J].计算机应用,2007,27(2):275-277. 被引量:2
  • 2WANG C G, LI B, LI L M. A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF[ J]. IEEE Transactions on Vehicular Technology, 2004, 53(41) : 1235 - 1246.
  • 3YANG Y, WANG J, KRAVETS R. Distributed optimal contention window control for elastic traffic in single-cell wireless LANs[ J].IEEE/ACM Transactions on Networking, 2007, 15 (6) : 1373 - 1386.
  • 4IEEE 802.11, Wireless LAN Medium Access Control (MAC) and physical layer (PHY) specifications[ S]. 2007.
  • 5DOVROLIS C, RAMANATHAN P. A case for relative differentiated services and the proportional differentiation model [ J]. IEEE Network, 1999, 13(5): 26-34.
  • 6YOON J, YUN S, KIM H, et al. Maximizing differentiated throughput in 1EEE 802.11 e wireless LAN[ C] //Proceedings of IEEE Conference on Local Computer Networks. Tampa, USA: IEEE Press, 2006:411-417.
  • 7LEE S J, AHN C, SHIN J. Control parameter setting of IEEE 802. 11 e for proportional throughput differentiation[ C]//Proceedings of ICOIN'06. Sendai, Japan: Springer, 2006:122-131.
  • 8BANCHS A, VOLLERO L. Throughput analysis and optimal config- uration of 802.11 e EDCA[ J]. Computer Networks, 2006, 50(11) : 1749 - 1768.
  • 9XIAO Y. Performance analysis of priority scheme for IEEE 802.11 and IEEE 802.1 le wireless LANs[ J]. IEEE Transactions on Wireless Communications, 2005, 4(4) : .1506 - 1515.
  • 10LI B, BATTITI R. Performance analysis of an enhanced IEEE 802. 11 distributed coordination function supporting service differentiation [ C] //Proceedings of QoFIS. Heidelberg, Berlin: Springer, 2003: 152 - 161.

共引文献13

同被引文献12

  • 1徐鹏飞,李炜,郑华,吴建国.神经网络在时间序列预测中的应用研究[J].电子技术(上海),2010(8):5-7. 被引量:11
  • 2DENG Shuo. Reducing 3 G energy consumption on mobile devices [ DB/OL ]. (2012-07-02) [ 2015-11 - 10 ]. http :// dspace, mit. edu/handle /1721.1/ 71496.
  • 3BALASUBRAMANIAN N, BALASUBRAMANIAN A, VENKATARAMANI A. Energy consumption in mobile phones: a measurement study and implications for network applications[ C ]//Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement. Chicago, USA : ACM Press, 2009:280-293.
  • 4WANG L, MANNER J. Energy-efficient mobile web in a bundle[J]. Computer Networks, 2013, 57(17) : 3581-3600.
  • 5AGGARWAL B, CHITNIS P, DEY A, et al. Stratus: energy-efficient mobile communication using cloud support [ J ]. ACM SIGCOMM Computer Communication Review, 2011, 41 (4) : 477-478.
  • 6WANG K, ALONSO-ZARATE J, DOHLER M. Energy-efficiency of LTE for small data machine-to-machine communica- tions[C]//2013 IEEE International Conference on Communications (ICC). Budapest, Hungary: IEEE Press, 2013: 4120-4124.
  • 7LAURIDSEN M, WANG H, MOGENSEN P. LTE UE Energy saving by applying carrier aggregation in a HetNet scenario [ C ]//2013 IEEE 77th Proceedings of Vehicular Technology Conference ( VTC Spring). Dresden, German : IEEE Press, 2013:1-5.
  • 8YU F, XUE G, ZHU H, et al. Cutting without pain: mitigating 3g radio tail effect on smartphones[ C]//2013 IEEE Pro- ceedings of INFOCOM. Turin, Italy: IEEE Press, 2013:440-444.
  • 9DING N, WAGNER D, CHEN X, et al. Characterizing and modeling the impact of wireless signal strength on smartphone battery drain[ J]. ACM SIGMETRICS Performance Evaluation Review, 2013, 41( 1 ) : 29-40.
  • 10HUANG J, QIAN F, GERBER A, et al. A close examination of performance and power characteristics of 4G LTE networks [ C ]//Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. Ambleside, Unit- ed Kingdom, ACM Press, 2012:225-238.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部