期刊文献+

基于改进SURF算法的大规模群体人数统计 被引量:3

Large crowd count based on improved SURF algorithm
下载PDF
导出
摘要 为了在高密度大规模群体人数统计的问题上有效的克服遮挡与摄像机透视畸形带来的影响,文中采用了一种基于线性内插透视矫正的SURF(Speeded Up Robust Feature)算法。首先,采用背景差与滑动平均相结合的方式得到人群前景,并通过对二值前景图像的形态学处理进行去噪。其次,对获取到的前景图像进行多特征提取,将传统的灰度共生矩阵特征与SURF算法特征相结合,并通过线性内插权值的透视矫正方法进行摄像畸形矫正,将矫正后的特征值组成了表征人群数目特征的特征向量。从而减少了深度信息丢失而引起的误差,得到了优化的人群特征向量;最后,通过支持向量回归的方式拟合出人群人数统计模板,以此预测监控区域的人数。实验表明文中方法具有较高的准确性,较传统SURF算法准确率有了很高的提升。 The SURF based on the method of Linear Interpolation for camera distortion calibration is a- dopted for high-density crowd counting. The eigenvalues are built on the Gray Level Co-occurrence Ma- trix(GLCM) features and the SURF features. To get the foreground image ,firstly, gray and smooth the in- put image. Then getting foreground image by background subtraction operation and moving average meth- od. And also morphology processing was performed on the binary image to eliminate noise. And then, ex- tracting feature parameters of foreground image. Though the method of linear interpolation, weight values are interpolated to reducethe error, which is caused bycamera distortion calibration. Linear interpolation weights perspective correction method is considered for camera deformity correction. The optimized crowd feature vector can be obtained then. Through the method of support vector regression (SVR), the crowd number can be forecasted by the training model. The experiment result shows that the method of this pa- per has a higher accuracy than the previous methods.
出处 《西安科技大学学报》 CAS 北大核心 2015年第5期650-655,共6页 Journal of Xi’an University of Science and Technology
基金 国家自然科学基金项目(61302133) 陕西省工业攻关计划项目(2012K06-16) 西安科技大学博士启动金资助项目(2014QDJ066)
关键词 人数统计 SURF 灰度共生矩阵 透视矫正 支持向量回归 crowd count SURF gray level co-occurrence matrix perspective-correct support vector re- gression
  • 相关文献

参考文献12

  • 1杨华,苏航,郑世宝.大规模群体密度估计算法[J].电视技术,2010,34(5):113-116. 被引量:5
  • 2吕济民,曾昭贤,张茂军.基于非最大抑制聚类的视频人数估测方法[J].模式识别与人工智能,2012,25(1):150-156. 被引量:7
  • 3Cho S Y, Chow T W S, Leung C T. A neural-based crowd estimation by hybrid global learning algorithm [ J ]. IEEE. Transactions on Systems, Man, and Cyber- netics-Part B : Cybernetics, 1999,29 (4) :535 - 541.
  • 4Nevatia R, Zhao T. Tracking multiple humans in crowd-ed environments [ C ]//IEEE International Conference on Computer Vision and Pattern Recognition, Washing- ton DC, USA,2004.
  • 5Damian Roqueiro A, Valery A, Petrnshin. Counting peo- ple using video cameras [ J ]. International Journal of Parallel. Emergent and Distributed Systems ,2007 : 193 - 2O9.
  • 6Proceedings of eleventh IEEE international workshop on performance evaluation of tracking and surveiUance (PETS 2009) [ R]. IEEE Computer Science,2009.
  • 7Conte D, Foggia P, Percannella G, et al. A method for counting moving people in video surveillance videos I J]. EURASIP Journal on Advances in Signal Process- ing,2010,5(1) :1 -8.
  • 8HOU Ya-li, Pang K H. People counting and human de- tection in a challenging situation [ J ]. IEEE Transactions on Systems, Man mad Cybernetics : Part A : Systems and Humans,2011,41 ( 1 ) :245 - 253.
  • 9Bay H,Ess A,Tuytelaars T,et al. SURF:speeded up ro- bust features [ J ]. Computer Vision and Image Under- standing,2008,110 (3) : 346 - 359.
  • 10杨德坤,侯德文,步亚东.灰度共生矩阵在纹理特征提取中的发展[J].信息系统工程,2012(1):136-136. 被引量:11

二级参考文献28

  • 1刘勃,魏铭旭,周荷琴.一种基于区间分布的自适应背景提取算法[J].模式识别与人工智能,2005,18(3):316-321. 被引量:7
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3YIN J H,DAVIES A C ,VELASTIN S A. Crowd monitoring using image processing [J].IEEE Electronics Communication Engineering Journal, 1995,7( 1 ) :37-47.
  • 4CHOW T W,CHO Siu-yeung. Industrial neural vision system for underground railway station platform surveillance [J].Advanced Engineering Informatics, 2002,16 ( 1 ) :73-83.
  • 5VELASTIN S, COSTA L, LOTUFO R ,et al. Automatic estimation of crowd density using texture[J]. Safety Science, 1998,28:165-175.
  • 6CUCCH1ARA R, GRANA C, PICCARDI M,et al. Improving shadow suppression in moving object detection with HSV color information[C] //Proc. IEEE Intelligent Transportation Systems. [S.l.]:IEEE Press, 2001 : 34-339.
  • 7WU Xinyu, LIANG Guoyuan,LEE Kakeung,et al. Crowd density estimation using texture analysis and learning [C]//Proc. IEEE International Conference on Robotics and Biomimetics. [S.l.] :IEEE Press,2006:214-219.
  • 8MA Wenhua, HUANG Lei, LIU Changping. Crowd estimation using multi-scale local texture analysis and confidence-based soft classification [C]//Proc. Second International Symposium on Intelligent Information Technology Application ,2008,1 : 142-146.
  • 9VAPNIK V,CORTES C. Support vector networks[J].Machine Learning, 1995,20 ( 3 ) : 273 -297.
  • 10VAPNIK V,SCHOBLKOPF B,BURGES C. Extracting support data for a given task [EB/OL].[2009-08-20].http://citeseerx.ist.psu.edu/viewdoc/ summary?doi= 10.1.1.42.1588.

共引文献20

同被引文献23

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部