期刊文献+

SiC/SiO_2界面的原子分辨率三维重构

Atomic resolution 3D reconstruction of SiC/SiO_2 interface
下载PDF
导出
摘要 碳化硅(Si C)作为一种新型材料被广泛应用于高功率半导体器件中。目前的Si C基金属氧化物半导体场效应晶体管器件存在的主要问题是沟道电子迁移率低。Si C/Si O2界面处的过渡层被认为是造成沟道电子迁移率低的主要原因,但是该过渡层的原子结构尚不清楚。本文利用球差矫正扫描透射电子显微镜深入研究了Si C/Si O2的界面。以变聚焦序列技术得到了界面过渡层不同深度的原子分辨率断层扫描图像,用变聚焦序列图像重构了界面的原子分辨率三维结构。精确的界面原子结构表明Si C/Si O2界面处的过渡区是由于邻晶界面上台阶突起和微刻面构成的。它是界面原子尺度的粗糙度的反映。邻晶界面上的台阶突起和微刻面增加了电子在界面传输过程中的散射几率,造成了沟道电子迁移率过低。 Silicon carbide ( SiC) is widely used in high power electronics as a substitute of silicon. The key problem of SiC based metal?oxide?semiconductor field effect transistors ( MOSFET) is the relatively low channel electron mobility, and the transition layer of SiC/SiO2 interface is considered to be the main cause for the reduced electron mobility. However, the atomic structure of the transition layer is still unclear. In this paper, the transition layer was investigated with a 5th order spherical aberration corrected scanning transmission electron microscope. Depth sectioning images of SiC/SiO2 interface were obtained with the through-focal series technique, and an atomic resolution 3D structure of the interface was reconstructed with the through-focal series images. The clear 3D interface structure suggests that tshe interface has an atomic scale roughness, and the transition layer is a contrast of the roughness. The kinks, steps and microfacets increase the scattering probability of channel electrons, resulting in reducing the channel mobility of the MOSFET devices.
出处 《电子显微学报》 CAS CSCD 2015年第5期371-376,共6页 Journal of Chinese Electron Microscopy Society
基金 山西省青年科技研究基金资助项目(No.2015021071) 山西省国际科技合作计划(No.2015081045)
关键词 扫描透射显微镜 变聚焦图像序列 三维重构 界面 沟道电子迁移率 STEM through-focal series 3D reconstruction interface channel electron mobility
  • 相关文献

参考文献19

  • 1Choyke W J, Matsunami H, Pensl G. Silicon Carbide: Recent Major Advances[M]. Berlin: Springer, 2004.
  • 2Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C- SiC, and Si for power devices [ J]. IEEE T Electron Dev, 1993, 40(3) : 645 -655.
  • 3Liu P. Atomic structure of the vicinal interface between silicon carbide and silicon dioxide [ D ]. University of Tennessee ,2014.
  • 4Pantelides S T,et al. Si/SiO2 and SiC/SiO2 interfaces for MOSFETs-challenges and advances [ J]. Mater Sci Forum, 2006,527 - 529 : 935 - 948.
  • 5Wang Y, et al. The effect of gate oxide processes on the performance of 4H-SiC MOSFETs and gate-controlled diodes[J]. IEEE TElectron Dev, 2008, 55(8): 2046 - 2053.
  • 6Sharma Y K, et al. Phosphorous passivation of the SiO2/4H-SiC interface [ J ]. Solid State Electron, 2012, 68(1): 103 -107.
  • 7Biggerstaff T L, et al. Relationship between 4H-SiC/ SiO2 transition layer thickness and mobility [ J ]. Appl Phys Lett, 2009,95(3): 032108.
  • 8Taillon J A, et al. Systematic structural and chemical characterization of the transition layer at the interface of NO-annealed 4H-SiC/SiO2 metal-oxide-semiconductor field-effect transistors [ J ]. J Appl Phys, 2013,113 ( 4 ) : 044517.
  • 9Kramer J, et al. Growth and surface morphology: Epitaxial MgO films and the Ag ( 1,1,19 ) substrate [ J ]. Surf Sci, 2003,537 ( 1 - 3 ) : 265 - 275.
  • 10Tegenkamp C, et al. Stepped NaC1 films grown epitaxially on Si-precovered vicinal Ge (100) [ J ]. Surf Sci,2000,466(1-3): 41 -53.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部