期刊文献+

基于贝叶斯压缩感知的CSR稳健参数估计方法

Robust parameter estimation method for CSR based on Bayesian compressed sensing
下载PDF
导出
摘要 针对"完全扰动"情况下压缩感知雷达(compressed sensing radar,CSR)观测矢量和感知矩阵严重失配,进而引起参数估计性能急剧下降的问题,提出了一种基于贝叶斯压缩感知(Bayesian compressed sensing,BCS)的稳健参数估计方法。首先构造"完全扰动"情况下CSR参数估计的稀疏线性模型,并从稀疏矢量的最大后验概率(maximum a posteriori,MAP)出发,推导了完全扰动矩阵服从柯西分布时的优化目标函数;随后通过稀疏矢量和尺度参数的交替迭代,求得稀疏矢量的最优解。与现有重构算法及其改进算法相比,该方法能够有效改善CSR系统应对失配误差的稳健性,提高目标成功检测的概率和参数估计的精度。计算机仿真实验验证了该方法的有效性和鲁棒性。 In practical application, the mismatch between measurement vector and sensing matrix caused by corn pletely perturbed observations will result in a sharp decline in the performance of parameter estimation for compressed sensing radar (CSR). A novel robust parameter estimation algorithm is proposed based on Bayesian compressed sens- ing (BCS). The completely perturbed sparse linear model is firstly built, and the robust target function is derived with the maximum a posteriori (MAP) of the sparse vector when the completely perturbed matrix obeys Cauchy distribu- tion. Then the optimal solution is achieved through the alternate iteration between the sparse vector and the scale pa- rameter. Compared with most existing recovery algorithm and their derivants, the proposed method effectively im proves the robustness against the foregoing mismatch, increases the target detection probability and reduces the estima- tion error. The effectiveness of the proposed algorithms is demonstrated by computer simulations.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第11期2480-2486,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(60702015)资助课题
关键词 压缩感知雷达 完全扰动 柯西分布 Lorentzian范数 交替迭代 compressed sensing radar (CSR) completely perturbation Cauchy distribution Lorentzian norm alternate iteration
  • 相关文献

参考文献20

  • 1Baraniuk R,Steeghs P. Compressive radar imaging[C] // Proc.of the IEEE Radar Conference , 2007 : 128 - 133.
  • 2Donoho D L. Compressed sensing[J]. IEEE Trans, on Informa-tion Theory, 2006, 52(4): 1289 - 1306.
  • 3Ender J H G. On compressive sensing applied to radar[J]. Sig-nal Processing . 2010, 90(5) : 1402 - 1414.
  • 4Strohmer T,Friedlander B. Analysis of sparse MIMO radar[J]. Ap-plied and Computational Harmonic Analysis t2014j37(3) :361 - 388.
  • 5张劲东,张弓,潘汇,贲德.基于滤波器结构的压缩感知雷达感知矩阵优化[J].航空学报,2013,34(4):864-872. 被引量:12
  • 6Wipf D, Nagarajan S. Iterative reweighted and li methods forfinding sparse solutions[J], IEEE Journal of Selected Topics inSignal Processing,2010,4(2):317-329.
  • 7Matthew H,Thomas S. General deviants: an analysis of pertur-bations in compressed sensing[ C] // Proc. of the IEEE Journalof Selected Topics in Signal Processing,Special Issue on Com-pressed Sensing,2010,4(2):342 - 349.
  • 8Tang Y J, Chen L M, Gu Y T. On the performance bound ofsparse estimation with sensing matrix perturbation [ J]. IEEETrans, on Signal Processing , 2013,61(17): 4372 - 4386.
  • 9Zhu H,Geert L,Georgios G. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Trans, onSignal Processing , 2011,59(5) : 2002 - 2016.
  • 10Han X,Zhang H, Meng H. TLS-FOCUSS for sparse recovery withperturbed dictionary [C] // Proc. of the International Conference onAcoustics Speech and Signal Processing^2011 :3952 - 3955.

二级参考文献48

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2孙晓丽,宋国乡,冯象初.基于噪声-纹理检测算子的图像去噪方法[J].电子学报,2007,35(7):1372-1375. 被引量:4
  • 3Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithm[J].Physica D,1992,60(1-4):259-268.
  • 4Zhang Lei,et al.Multiscale LMMSE-based image denoising with optimal wavelet selection[J].IEEE Trans.on Circuits and Systems for Video Technology,2005,15(4):469-481.
  • 5Chambolle A.An algorithm for total variation minimization and applications[J].Journal of mathematical imaging and vision,2004,20(1-2):89-97.
  • 6Fadili M J,Peyré G.Total variation projection with first order schemes.2009 16th IEEE In-ternational Conference on Image Processing (ICIP).Cairo,Egypt:IEEE Signal Processing Society,2009.1325-1328.
  • 7Donoho D.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 8Goldstein T,Osher S.The split Bregman method for l1 regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.
  • 9Douglas J,Rachford H.On the numerical solution of heat conduction problems in two and three space variables[J].Trans.Americ.Math.Soc,1956,82(2):421-439.
  • 10Chambolle A,et al.Nonlinear wavelet image processing:variational problems,compression,and noise removal through wavelet shrinkage[J].IEEE Trans.Image Proc.,1998,7(3):319-335.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部