期刊文献+

模拟富氧燃烧过程中燃料在CO_2中稀释对NH_3向NO_x转化影响的研究(英文) 被引量:1

Effect of dilution of fuel in CO_2 on the conversion of NH_3 to NO_x during oxy-fuel combustion
原文传递
导出
摘要 目的:探索燃料富氧燃烧过程中不同浓度CO2的稀释作用对NOx生成的影响,为探索NOx在O2/CO2气氛中生成机理研究提供理论基础。创新点:提出一种无分支链式反应解释说明CO2在还原性粒子环境中对反应的影响。方法:通过Chemkin Pro中塞流式反应器模块对混入NH3的CH4燃料在O2/CO2气氛中反应进行数值模拟,同时改变CO2的稀释程度来探索CO2浓度对NOx生成的影响,并比较不同反应机理下的模拟结果,探索此环境中NOx的生成机理(表1)。结论:1.无支链反应机理可用于解释CO2在还原性粒子环境中对NOx生成与还原的影响;2.随着CO2浓度的升高,无支链反应和支链反应相互竞争H,进而抑制NO的生成;3.在对NH3转化效率的影响方面,CO2浓度增加引发的无支链反应和支链反应对H的竞争,在富燃料条件下从促进转化变为抑制转化,在化学当量和贫燃料条件下从无影响变为抑制转化。 The indirect chemical effects of fuel dilution by CO2 on NO formation were investigated numerically in this paper. CH4 doped with NH3 was used as fuel, while CO2 and 02 were mixed as oxidant. The dilution effect of CO2 was then investigated through adding extra CO2 to the reaction system. An isothermal plug flow reactor was used. An unbranched chain reaction mechanism is proposed to illustrate the chemical effects of CO2 on the H/O/OH radical pool and NOx. Due to the reaction between CO2 and H, extra NO will be formed in fuel-rich conditions, while NO will be inhibited in fuel-lean conditions and high CO2 dilution conditions. The reaction affected the radical pools of OH, H, and O of the branched chain reaction, and then the formation and reduction of NO. The pool of H had the greatest effect on NO reduction. The results suggest that the indirect chemical effects on NO formation differ between diluted fuel oxy-fuel combustion conditions and normal oxy-fuel conditions.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2015年第10期820-829,共10页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Basic Research Program(973Program)of China(No.2012CB214906)
关键词 CO2 富氧燃烧 NO 燃料稀释 CO2, Oxy-fuel combustion, NO, Fuel dilution
  • 相关文献

参考文献19

  • 1Ahn, J., Kim, H.J., Choi, K.S., 2009. Combustion characteris- tics of oxy-fuel burners for CO2 capturing boilers. Jour- nal of Thermal Science and Technology, 4(3):408-413. [doi: 10.1299/jtst.4.408].
  • 2Bhuiyan, A.A., Naser, J., 2015a. Numerical modelling of oxy fuel combustion, the effect of radiative and convective heat transfer and burnout. Fuel 139:268-284. [doi:10. 1016/j.fuel.2014.08.034].
  • 3Bhuiyan, A.A., Naser, J., 2015b. Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace. Fuel, 143:455-466. [doi:10. 1016/j.fuel.2014.11.089].
  • 4Boushaki, T., Mergheni, M.A., Sautet, J.C., et al., 2008. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner. Experimental Thermal and Fluid Sci- ence, 32(7):1363-1370. [doi:10.1016/j.expthermflusci. 2007.11.009].
  • 5Boushaki, T., Sautet, J.C., Labegorre, B., 2009. Control of flames by tangential jet actuators in oxy-fuel burners. Combustion and Flame, 156(11):2043-2055. [doi:10. 1016/j.combustflame.2009.06.013].
  • 6Buhre, B.J.P., Elliott, L.K., Sheng, C.D., et al., 2005. Oxy- fuel combustion technology for coal-fired power genera- tion. Progress in Energy and Combustion Science, 31(4) 283-307. [doi: 10.1016/j.pecs.2005.07.001 ].
  • 7Cao, H., Sun, S., Liu, Y., et al., 2010. Computational fluid dynamics modeling of NOx reduction mechanism in oxy- fuel combustion. Energy & Fuels, 24(1):131-135. [doi: 10.1021/ef900524b].
  • 8Chui, E.H., Douglas, M.A., Tan, Y.W., 2003. Modeling of oxy-fuel combustion for a western Canadian sub- bituminous coal. Fuel, 82(10):1201-1210. [doi:10.1016/ S0016-2361 (02)00400-3].
  • 9Chui, E.H., Majeski, A.J., Douglas, M.A., et al., 2004. Nu- merical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. Energy, 29(9-10): 1285-1296. [doi: 10.1016/j.energy.2004.03.102].
  • 10Feng, B., Ando, T., Okazald, K., 1998. NO destruction and regeneration in CO2 enriched CH4 flame. JSME Interna- tional Journal Series B-Fluids and Thermal Engineering, 41(4):959-965. [doi: 10.1299/jsmeb.41.959].

同被引文献11

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部