期刊文献+

聚二甲基硅氧烷薄膜对声表面波传播特性影响 被引量:2

Effects of Poly(Dimethylsiloxane) Film on the Propagation Characteristics of Surface Acoustic Wave
下载PDF
导出
摘要 研究了压电基片上聚二甲基硅氧烷(PDMS)薄膜对声表面波(SAW)传播特性影响。在128°YXLiNbO3压电基片上光刻叉指换能器(IDT),其声传播路径上涂覆PDMS薄膜,IDT激发的SAW加热PDMS薄膜上石蜡油微流体,并测量不同PDMS薄膜厚度时石蜡油微流体的温度,进而计算薄膜对SAW的衰减量。实验结果和理论计算表明,压电基片上涂覆PDMS薄膜将衰减辐射入石蜡油微流体的声表面波强度,衰减幅度随基片上PDMS薄膜厚度的增加而增加。当压电基片上涂覆的PDMS薄膜厚度为100μm和150μm时,薄膜对SAW衰减量分别为23.3%和36.0%。 The effects of poly(dimethylsiloxane)(PDMS)film on the propagation of surface acoustic wave is studied.An interdigital transducer is fabricated on a 128°YX-LiNbO3 substrate for exciting surface acoustic wave,which is used to heat the paraffin oil microfluid on the PDMS film.The temperature of the paraffin oil microfluid is then measured for calculating the attenuation of surface acoustic wave.Results show that surface acoustic wave is attenuated by PDMS film on the piezoelectric substrate,and the value of the attenuation is increased with the thickness of PDMS film.The attenuation ratio is 23.3% and 36.0% respectively,when the thickness of PDMS film on the piezoelectric substrate is 100μm and 150μm.
出处 《压电与声光》 CAS CSCD 北大核心 2015年第5期748-751,共4页 Piezoelectrics & Acoustooptics
基金 常州工学院科研基金资助项目(YN1404) 常州工学院大学生创新基金资助项目(J140029) 浙江省重点学科基金资助项目(Xkl11077) 江苏省大学创新基金资助项目(201511055039X)
关键词 压电基片 薄膜 声表面波(SAW) 衰减 微流器件 piezoelectric substrate film surface acoustic wave attenuation microfluidic device
  • 相关文献

参考文献15

  • 1KIM J, SHIM Y, SONG S, et ah Rapid prototyping of multifunetional microfluidic cartridges for electro chemical biosensing platforms[J]. Sensors and Actua tors B: Chemical, 2014, 202(10): 60-66.
  • 2THIBAULT B, PATRICK P, AUDREY L, et al. Development of a new microfluidic platform integra- ting co-euhures of intestinal and liver cell lines[J]. Toxicology in Vitro, 2014, 28(5): 885-895.
  • 3EVANDRO P, DAVIDE F, PAOLO S, et al. Genera-tion of water-in-oil and oil-in-water microdroplets in polyester-toner mierofluidic devices V J]. Sensors and Actuators B: Chemical, 2014, 196(6): 525-531.
  • 4HAIDER A J, LAWATI A, AFSAL M, et al. Combi- nation of capillary micellar liquid chromatography with on-chip microfluidic chemiluminescence detection for direct analysis of huspirone in human plasma[J]. Ta- lanta, 2014,127(9): 230-238.
  • 5MARA M, MASSIMO G, ELISA M. Recent advance- ments in chemical luminescence-based lab-on-chip and mierofluidic platforms for bioanalysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87 (1) : 36-52.
  • 6LORENZO C, DARIO C, STEFANIA M, et al. Mi- crofluidic and lab-on-a-chip preparation routes for or- ganic nanoparticles and vesicular systems for nanomed- icine applications [J]. Advanced Drug Delivery Re- views,2013, 65(11/12) : 1496-1532.
  • 7MAHMOOD G, AMIRS N, CARLOS G A, et al. Microfluidic positioning of pollen grains in lab-on-a- chip for single cell analysis[J]. Journal of Bioscience and Bioengineering, 2014, 117(4) : 504-511.
  • 8BEYSSEN D, BRIZOUAL L L, ELMAZRIA O, et al. Microfluidic device based on surface acoustic wave [J] Sensors and Actuators B:Chemical, 2006, 118(1/ 2) : 380-385.
  • 9MYEONG C J, RASIM G. Dual surface acoustic wave- based active mixing in a microfluidic channel[,J]. Sen- sors and Actuators A: Physical, 2013, 196(1):1-7.
  • 10RENAUDIN A, TABOURIER P, ZHANG V, et al. SAW nanopump for handling droplets in view of bio- logical applications [J]. Sensors and Actuators B: Chemical, 2006, 113(1): 389-397.

同被引文献689

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部