期刊文献+

纳米多相催化材料在常温反应中的应用 被引量:1

Nanomaterials as heterogeneous catalysts for room-temperature catalytic transformations
下载PDF
导出
摘要 近年来,纳米材料在化学反应过程中扮演着越来越重要的角色。纳米材料作为多相催化剂,具有高活性、高选择性、高稳定性而且易于回收利用等优点。将精心设计的纳米材料用于催化一系列反应,使其在常温下进行,可以促进资源的高效利用和节能减排,在化工领域有着广阔的应用前景。本文详细介绍了以下几种类型的纳米材料,即金属纳米粒子材料、固载型金属离子复合物纳米材料、金属氧化物纳米材料和固体酸纳米材料。并阐述了上述纳米材料的结构特点及在催化方面的优势,同时结合实例,着重探讨了上述纳米材料作为多相催化剂在氧化反应、还原反应、偶联反应等多种节能高效反应中的应用。纳米材料因其多方面的优点以及广阔的应用范围,是一种极具发展潜力的多相催化材料。 Currently,nanomaterials are playing an increasingly important role in chemical reaction processes because the employment of nanomaterials as heterogeneous catalysts could achieve high activity,selectivity,and stability. Reactions proceeded at room temperature employing well-designed nanomaterials as heterogeneous catalysts will promote efficient energy utilization and thus protect environment,which would have a broad applications in chemical engineering. In this review,a variety of nanomaterials are introduced,including metal and metal oxide nanoparticles,grafting metal complexes and solids acid and their structure characteristic and employment in various room-temperature reactions,such as oxidation,hydrogenation,and coupling reactions. Nanomaterials will become promising heterogeneous catalytic materials due to their advantages and wide applications in many aspects.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第10期3530-3539,共10页 Chemical Industry and Engineering Progress
关键词 多相催化 纳米材料 常温反应 heterogeneous catalysis nanomaterials room-temperature reactions
  • 相关文献

参考文献62

  • 1Vivek P,Rafael L,et al. Megnetically recoverable nanocatalysts[J].Chemical Reviews,2011,111(5):3036-3075.
  • 2Schlogl R,Abd Hamid S B,Sharifah B. Nanocatalysis:Mature science revisited or something really new?[J].Angewandte Chemie International Edition,2004,43(13):1628-1637.
  • 3Pagliaro M,Pandarus V,Ciriminna R,et al. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions[J].ChemCatChem.,2012,4(4):432-445.
  • 4Philippe Serp,Karine Philippot. Nanomaterials in Catalysis[M].Weinheim,Germany:Wiley-VCH,2012:1-54.
  • 5Lam F L Y,Li M C L,Chau R S L,et al. Catalysis at room temperature:Perspectives for future green chemical processes[J].WIREs Energy Environ.,2015,4(4):316-338.
  • 6Zhu X,Hoang T,Lobban L,et al. Low CO content hydrogen production from bio-ethanol using a combined plasma reforming-catalytic water gas shift reactor[J].Applied Catalysis,B:Environmental,2010,94(3-4):311-317.
  • 7韩丹,张爱文,高官俊,苏海全.负载型纳米Au催化剂光催化性能的研究进展[J].化工进展,2012,31(2):435-440. 被引量:6
  • 8White R J,Luque R,Budarin V L. Supported metal nanoparticles on porous materials. Methods and applications[J].Chemical Society Reviews,2009,38(2):481-494.
  • 9Wu B,Zheng N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J].Nano Today,2013,8(2):168-197.
  • 10Hu J,Chen Z,Li M,et al. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J].ACS Applied Materials& Interfaces,2014,6(15):13191-13200.

二级参考文献175

  • 1靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化,2004,18(4):310-320. 被引量:17
  • 2贺攀科,杨建军,杨冬梅,王晓辉,张敏.Au/TiO_2光催化分解臭氧[J].催化学报,2006,27(1):71-74. 被引量:23
  • 3邱鹏远,赫崇衡,朱志华,姜昕.氢氧直接合成法合成过氧化氢的研究进展[J].石油化工,2006,35(8):785-789. 被引量:6
  • 4崔玉民.负载贵金属的TiO_2光催化剂的研究进展[J].贵金属,2007,28(3):62-65. 被引量:17
  • 5Fujishima A, Honda K. Oxygen vacancies as active sites for water dissociationonrutileTiO2 (110)[J].Nature, 1972, 37: 238.
  • 6Choi W, Terrnin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem., 1994, 98: 13669- 13679.
  • 7Asahi R, Morikawa T, et al. Visible-light photocatalysis in nitrogen- doped titaniumoxides[J].Science, 2001, 293: 269-271.
  • 8Zhu H Y, Chen X, Zheng Z E Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation [J]. Chem. Commun., 2009 (48): 7524-7526.
  • 9Chen Xi, Zheng Zhanfeng, Ke Xuebin, et al. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation [J]. Green Chem., 2010, 12: 414-419.
  • 10Roberts M W. Catalysis and oil-based induslry ( 1930-1960) [J]. Carol. Lett., 2000, 67 (1): 17-21.

共引文献16

同被引文献20

  • 1SU R, TIRUVALAM R, HE Q, et al. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au- Pd nanoparticles[J]. ACS Nano, 2012, 6(7):6284-6292.
  • 2XU J, WHITE T, LI P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation[J]. J Am Chem Soc, 2010, 132(30):10398-10406.
  • 3HECK K N, NUTT M O, ALVAREZ P, et al. Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination[J]. J Catal, 2009, 267(2):97-104.
  • 4DIMITRATOS N, LOPEZ-SANCHEZ J A, MEENAKSHISUNDARAM S, et al. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanoparticles[J]. Green Chem, 2009, 11(8):1209-1216.
  • 5OKAMOTO H, MASSALSKI T B. Alloy phase diagrams [EB/OL]. [2015-12-10]. http://products. asminternational. org/hbk/index.jsp.
  • 6LIM B, KOBAYASHI H, YU T, et al. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth [J]. J Am Chem Soc, 2010, 132(8):2506-2507.
  • 7ZHANG K, XIANG Y J, WU X C, et al. Enhanced optical responses of Au@Pd core/shell nanobars[J]. Langmuir, 2009, 25(2):1162-1168.
  • 8ZHU C, ZENG J, TAO J, et al. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nano crystals[J]. J Am Chem Soc, 2012, 134(38):15822-15831.
  • 9DING Y, FAN F R, TIAN Z Q, et al. Atomic structure of Au-Pd bimetallic alloyed nanoparticles[J]. J Am Chem Soc, 2010, 132(35):12480-12486.
  • 10ZHAI Y M, ZHAI J F, DONG S J. Temperature- dependent synthesis of CoPt hollow nanoparticles: From “Nanochain” to “Nanoring”[J]. Chem Commun, 2010, 46(9):1500-1502.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部