期刊文献+

蚁群算法在PID控制中的应用及其参数影响 被引量:7

Application and parameter influence of ACO in PID control
下载PDF
导出
摘要 鉴于传统PID参数整定方法的不足,提出了一种采用蚁群算法优化选取PID控制参数的方法。通过建立数学模型将PID控制参数选择问题抽象成路径选择问题,从而将蚁群算法成功的应用于PID参数优选,并对寻优过程进行了仿真。将结果与常用的临界比例度法整定的结果进行了比较,发现基于蚁群算法的PID参数优选方案可使系统超调量大幅减小,并明显缩短系统调节时间,具有良好的应用前景。此外,讨论了蚁群算法中的关键参数对算法性能的影响,对比了不同参数下算法的收敛速度和求解质量。 In view of the deficiencies of traditional PID parameters tuning method,a new method to optimize and select PID control parameters by means of ACO(ant colony algorithm)is proposed,in which the selection problem of PID control parameters is abstracted into the routing selection problem by building a mathematical model,thus ACO is applied successfully to PID parametric optimization and the optimizing process is simulated. It is found by comparing with tuned results of common critical proportioning method that the PID parameter optimization scheme based on ACO can reduce system overshoot significantly and shorten tuning time of system obviously,and has a great application prospect. In addition,the influence of key parameter in ACO on algorithm performance is discussed,and convergence velocity and solution quality of the algorithm with different parameters are compared.
出处 《现代电子技术》 北大核心 2015年第20期20-25,共6页 Modern Electronics Technique
关键词 PID控制 蚁群算法 信息素 参数优选 PID control ant colony algorithm pheromone parameter optimization
  • 相关文献

参考文献11

  • 1SUH J H,LEE J W,LEE Y J.Anti-sway control of an ATC using NN predictive PID control[C]//Proceedings of 30th Annual Conference of IEEE Industrial Electronics Society.Busan:IEEE,2004:2998-3003.
  • 2占永明,罗中明,鲍绍宣,郭峰.基于遗传算法PID参数的自动整定[J].哈尔滨理工大学学报,2000,5(2):34-37. 被引量:8
  • 3尹玉萍,刘万军,魏林.基于改进蚁群算法的多目标跟踪数据关联方法[J].计算机工程与应用,2014,50(16):16-20. 被引量:3
  • 4RUDY J,ELAZNY D.Solving multi-objective job shop problem using nature-based algorithms:new Pareto approximation features[J].An International Journal of Optimization and Control:Theories&Applications,2014,5(1):1-11.
  • 5ANSARI A,KATIYAR S.Application of ant colony algorithm for calculation and analysis of performance indices for adaptive control system[C]//Proceedings of 2014 Innovative Applications of Computational Intelligence on Power,Energy and Controls with their impact on Humanity.[S.l.]:IEEE,2014:3180-3183.
  • 6NARAYANA K L,KUMAR V N,DHIVYA M,et al.Application of ant colony optimization in tuning a PID controller to a conical tank[J].Indian Journal of Science and Technology,2015,8(2):217-223.
  • 7DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 8BONABEAU E,DORIGO M,THERAULAZ G.Inspiration for optimization from social insect behaviour[J].Nature,2000,406(6791):39-42.
  • 9孙跃光,林怀蔚,周华茂,杨小玲.基于临界比例度法整定PID控制器参数的仿真研究[J].现代电子技术,2012,35(8):192-194. 被引量:38
  • 10王琨,黄立勤.蚁群算法在全方向M型心动图检测中的应用与研究[J].现代电子技术,2014,37(22):14-16. 被引量:2

二级参考文献33

共引文献67

同被引文献94

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部