期刊文献+

高阶等差级数的一些理论及其应用 被引量:2

On the Systematic Discussion to Higher Arithmetic Progression
下载PDF
导出
摘要 通过引进组合学里的一些新的符号运算和定理,较为系统和严格地论述和证明了高阶等差级数的理论基础.在此基础上,就某种情形阐述其具体的一些应用方法.最后论述了与高阶等差级数相关联的一类级数——混合级数在有限和无穷时的求和问题. In this paper,by introducing some new symbolic operations and theorems in combinatorial mathematics,the foundation of arithmetic progression of higher-order is discussed and proved through a more systematic and rigorous way.On this basis,to some situation,some of the specific application methods are described.Lastly,a sort of series associated with arithmetic progression are discussed—mixed series under the questions of finite and infinite summation.
作者 林庆泽
出处 《兰州文理学院学报(自然科学版)》 2015年第5期26-29,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 高阶等差级数 差分 多项式 组合 混合级数 higher arithmetic progression difference polynomial combinatory mixed series
  • 相关文献

参考文献4

二级参考文献2

  • 1沈林兴.数列20题.数学通报,1979,(6):24-27.
  • 2江泽坚,吴智泉,周光亚.数学分析[M]人民教育出版社,1960.

共引文献5

同被引文献7

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部