期刊文献+

基于加权联合矩阵的演化聚类算法

Weighted co-association matrix oriented evolutionary clustering
下载PDF
导出
摘要 传统的演化聚类算法大多是基于单个时间截面进行问题求解,对于多时间截面的融合问题尚无有效的处理办法,造成了大量的知识浪费。从时间平滑框架出发,借鉴组合聚类思想,提出一种基于加权联合矩阵的演化聚类算法(WCEC)。实验表明,该方法不仅简单有效,而且对于数据点变化的演化情况具有较高的扩展性。 Compared with static clustering, evolutionary clustering can not only resist to the noise in short-tetm, but also reflect the changing trend in long term. It has been widely used in dynamic community identification, financial product analysis and many other fields. Traditional evolutionary clustering focus on a single time step, while falls short of dealing with multiple ones. Based on the time smoothing framework, this paper put forward a weighted co-association matrix oriented evolutionary clustering(WCEC) , which proved to be simple as well as scalable through experiments.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3247-3251,3268,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61462046) 江西省教育厅科学技术研究项目(GJJ14559)
关键词 静态聚类 演化聚类 联合矩阵 加权法 时间平滑 扩展性 static clustering evolutionary clustering co-association matrix weighted algorithm time smoothing scalability
  • 相关文献

参考文献36

  • 1Jain A K. Data clustering: 50 years beyond K-means [ J ]. Pattern Recognition Letters,2010,31 (8) :651-666.
  • 2Romesburg C. Cluster analysis for researchers [ M ]. [ S. 1. ] : Lalu. tom, 2004.
  • 3Chakrabarti D, Kum~ R, Tomkins A. Evolutionary clustering[ C]// P~c of the 12th ACM S1GKDD International Conference on Know- ledge Discovery and Data Mining. 2006.
  • 4Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining partitions [ J ]. Joumal of Machine Learning Re- search ,2002,3( 3 ) :583-617.
  • 5Chi Yun, Song Xiaodan, Zhou Dengyong, et al. On evolutionary spectral clustering[ J]. ACM Trans on Knowledge Discovery from Data, 2009,3(4) : 1701-1730.
  • 6Xu K S, Kliger M, Hero A O. Evolutionary spectral clustering with adaptive torgetting factor[ C ]//Proc of IEEE International Conference oil Acoustics Speech and Signal Processing. 2010:2174- 2177.
  • 7Wang Yi, Liu Shixia, Feng Jianhua, et al. Mining naturally smooth evolution of clusters from dynamic data[ C]//Proc of SIAM Confe- rence on Data Mining. 2007 : 125-134.
  • 8Ahnmd A, Xing E P. Dynamic non-parametric mixture models and the ~cun'ent Chinese restaurant process[ R]. [ S. 1. ] :Carnegie Mel- lon University ,2008.
  • 9Xu Tianbing, Zhang Zhongfei, Yu evolutionary clustering [ C ]//Proc on Data Mining. 2008.
  • 10P S, et al. Dirichlet process based of IEEE International Conference Zhang Jianwen, Song Yangqiu, Zhang Changshui, et al. Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora[ C]//Procs of the 16th ACM SIGKDD International Confe- rence on Knowledge Discovery and Data Mining. 2010.

二级参考文献49

  • 1阳琳贇,王文渊.聚类融合方法综述[J].计算机应用研究,2005,22(12):8-10. 被引量:28
  • 2Leiseh F.Bagged clustering.Working Papers SFB adaptive information systems and modeling in economics and management science [R]. 1999.
  • 3Dudoit S,Fridlyand J.Bagging to improve the accuracy of a clustering procedure[J].Bioinformatics, 2003,19 ( 9 ) : 1090-1099.
  • 4Fischer B,Buhmann J M.Path-based clustering for grouping of smooth curves and texture segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(4):513-518.
  • 5Topchy A,Jain A K,Punch W.Clustering ensembles:models of consensus and weak partitions [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27( 12 ) : 1866-1881.
  • 6Topehy A,Jain A K,Punch W.Combining multiple weak clusterings[C]//Proc of IEEE Intl Conf on Data Mining,Melbourne,FL, 2003 : 331-338.
  • 7Minaei-bidgoli B,Topchy A,Punch W F.A comparison of resampling methods for clustering ensembles[C]//Proc of Intl Conf on MLMTA' 04,2004: 939-945.
  • 8Strehl A,Ghosh J.CIuster ensembles-a knowledge reuse framework for combining multiple partitions[J].Machine Learning Research, 2002,3 : 583-617.
  • 9Fred A L N,Jain A K.Data clustering using evidence aceumulation[C]//Proc of the 16th ICPR'02, Quebec City, 2002: 276-280.
  • 10Yang Y,Kamel M.An aggregated clustering approach using multiant colonies algorithms[J]. Pattern Recognition, 2006,39 ( 7 ) : 1278-1289.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部