期刊文献+

基于重建系数的子空间聚类融合算法 被引量:1

Reconstruction coefficients based subspace clustering combination algorithm
下载PDF
导出
摘要 针对稀疏子空间聚类(sparse subspace clustering,SSC)和低秩子空间聚类(low rank subspace clustering,LRSC)这两种子空间聚类方法的聚类准确率和稳定性不够高,提出一种基于重建系数的子空间聚类融合算法(reconstruction coefficients based subspace clustering combination algorithm,RCSCC)。该算法基于重建系数,将稀疏子空间聚类和低秩子空间聚类分别得到的相似度矩阵进行点乘融合运算,然后再用谱聚类来得到最后的聚类结果。实验结果表明,改进后的聚类融合算法不仅提高了聚类的准确率,还有效提高了聚类的稳定性和鲁棒性,从而验证了改进后的算法是有效可行的。 Aiming at the clustering accuracy and stability of SSC and LRSC are not high enough, this paper proposed a reconstruction coefficients based subspace clustering combination algorithm ( RCSCC), which obtained the final similarity matrix based on point multiplication from the similarity matrixes got by sparse subspace clustering and low rank subspace clustering respectively, and then spectral clustering was done. Experimental results show that the improved algorithm can not only achieve higher accuracy, but also effectively improve the stability and robustness of clustering, which verifies that the improved algorithm is efficacious and feasible.
作者 许凯 吴小俊
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3252-3255,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61373055) 高等学校博士学科点专项科研基金资助项目(20130093110009)
关键词 稀疏表示 低秩表示 子空间聚类 聚类融合 系数重建 sparse representation low rank representation subspace clustering clustering combination coefficients reconstruction
  • 相关文献

参考文献21

  • 1Abdi H, Williams L J. Principal component analysis [ J]. Wiley In- terdisciplinary Reviews: Computational Statistics, 2010,2 ( 4 ) : 433-459.
  • 2Vidal R, Ma Yi, Sastry S. Generalized principal component analysis (GPCA) [ J]. IEEE Trans on Pattern Analysis and Machine In- telligence,2005,27 ( 12 ) : 1945-1959.
  • 3Vidal R, Ma Yi, Piazzi J. A new GPCA algorithm for clustering sub- spaces by fitting, differentiating and dividing polynomials [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [ S. 1. ] :IEEE Press, 2004:510-517.
  • 4Zhang Teng, Szlam A, Lerman G. Median K-fiats for hybrid linear modeling with many outliers [ C ]//Proc of the 12th IEEE International Conference on Computer Vision Workshops. [ S. 1. ] : IEEE Press, 2009:234-241.
  • 5Lu Le, Vidal R. Combined central and subspace clustering for com- puter vision applications [ C ]//Prec of the 23rd International Confe- rence on Machine Learning. New York : ACM Press ,2006:593-600.
  • 6Rao S, Tron R, Vidal R, et al. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32 (10) : 1832- 1845.
  • 7Rao S R, Tron R, Vidal R, et al. Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or cor- rnpted trajectories [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. [ S. 1. ] :IEEE Press,2008:1-8.
  • 8Favaro P, Vidal R, Ravichandran A. A closed form solution to robust subspace estimation and clustering[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. [ S. 1. ] :IEEE Press,2011 : 1801-1807.
  • 9Elhamifar E, Vidal R. Clustering disjoint subspaces via sparse repre- sentation [ C ]//Proc of IEEE International Conference on Acoustics Speech and Signal Processing. [ S. 1. ] : IEEE Press, 2010: 1926- 1929.
  • 10Liu Guangcsn, Lin Zhouchen, Yu Yong. Robust subspace segmenta- tion by low-rank representation [ C ]//Proc of the 27th International Conference on Machine Learning. 2010:663-670.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部