期刊文献+

利用CBIA与WSN构建的植物叶片分类系统 被引量:3

Plant leaf classification system using CBIA and WSN
下载PDF
导出
摘要 为了将计算机辅助植物叶片分类算法从理论研究向实际应用推进,利用基于内容的图像分析与无线传感器网络技术实现了移动设备终端的植物叶片分类功能。利用基于Sobel边缘检测子的全自动图像分割方法获取叶片的准确形状,利用基于霍特林变换的方法对叶片进行旋转预处理并提取傅里叶描述子等九种形状特征,然后使用多类支持向量机分类器对叶片进行分类,再进一步使用早期融合的方法对分类结果进行加强,随后利用以上叶片分类方法作为核心技术建立无线传感器网络,最后利用Java与安卓技术实现移动客户端的应用功能。实验结果显示,对于两个叶片数据库,分别达到了80%的分类准确率水平,与国际同类研究水平相当;对于无线传感器网络,移动终端用户可在9 s内从服务器得到叶片分类的反馈结果;移动客户端实现了安卓操作系统上的应用程序。综上所述,研究已经取得了显著的阶段性成果,并将在下一阶段的工作中引入更加新颖高效的方法来进一步提高叶片分类准确率。 In order to use computer aided plant leaf classification algorithms in a practical way, this paper introduced a plant leaf classification system using content-based image analysis and wireless sensor network (WSN) techniques. First, it used a Sobel edge detector based full-automatic image segmentation method to obtain the accurate shapes of leaves. Second, it applied a Hotelling transform based method to rotate the obtained shapes and extracts nine shape features, including fourier descriptor and so on. Thirdly, it indentified different classes of leaves by a multi-class support vector machine classifier and evaluates the classification result by the classification accuracy. Furthermore, it used an early fusion approach to enhance the classification result by combine different features. Fourthly, it used the above classification method as the core technique to establish a WSN. Finally, it applied Java and Android techniques to implement an internet application on the mobile client. In experiments, it obtained good classification accuracies of 80% on two datasets, which were similar to that in other previous researches. Furthermore,it designed a brief WSN framework and was able to finish a data transmission in 9 seconds. Lastly,it used Java technique to implement an application in Android system for image capturing and data transmission. In conclusion, this paper shows a remarkable result in the current phase, and it will be improved by more effective methods in the future work.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3336-3340,共5页 Application Research of Computers
基金 国家自然科学基金青年项目(61302121 61201440) 广东省自然科学基金自由申请项目(S2012010010295) 广东省新媒体与品牌传播创新应用重点实验室项目(2013WSYS0002) 广东省教育部产学研合作专项基金资助项目(2012B091100420) 吉林省大学生创新项目(201313607055)
关键词 基于内容的图像分析 叶片分类 图像分割 特征提取 支持向量机 特征融合 无线传感器网络 content-based image analysis leaf classification image segmentation feature extraction support vector machine feature fusion wireless sensor network
  • 相关文献

参考文献15

  • 1Lee W, Slaughter D. Recognition of partially occluded plant leaves using a modified watershed algorithm[ J ]. American Society or Ag- ricultural Engineers ,2004,47(4 ) : 1269-1280.
  • 2Ling Haibin, Jacobs D. Shape classification using the inner-distance [ J]. Pattern Analysis and Machine Intelligence, 2007,29 (2): 286 - 299.
  • 3谢从华,王立军,常晋义.面向叶子图像的植物归类的特征序列描述方法[J].计算机应用研究,2012,29(12):4740-4742. 被引量:2
  • 4Soederkvist O. Computer vision classification of leaves from Swedish trees[ D]. Linkoping:Linkoping University ,2001.
  • 5Pompanomchai C,Kuakiatngam C. Leaf and flower recognition system (e-Botanist) [ J]. International Journal of Engineering and Tech- nology,20l 1,3(4) : 347-351.
  • 6韩忠伟,李晨,Florian Schmidt.基于支持向量机和智能移动设备的多类树叶分类系统[J].生物技术世界,2013,10(3):173-173. 被引量:1
  • 7Kazakova N, Margala M, Durdle N. Sobel edge detection processor for a real-time volume rendering system [ C ]//Proc of International Sym- posium on Circuits and Systems. 2004:23-26.
  • 8Chen Li,Shirahama K,Czajkowska J,et al. A muhi-stage approach for automatic classification of environmental microorganisms[ C ~//Proc ~ff International Conference on Image Processing, Computer Vision, and Pattern Recognition. Las Vegas : CSREA Press,2013:364- 370.
  • 9Frigui H, Gader P. Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic K-nearest neighbor classifier [ J ]. Fuzzy Systems, 2011,17( 1 ) : 185-199.
  • 10Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [ J ]. Pattern Analysis and Machine Intelli- gence, 2002,24 ( 4 ) : 509 - 522.

二级参考文献30

  • 1李宝光,黄芳.植物叶片面积的测定方法[J].山东理工大学学报(自然科学版),2004,18(4):94-96. 被引量:25
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 3ZHANG Shah-wen, LEI Ying-ke. Modified locally linear discriminant embedding for plant leaf recognition [ J ]. Neurocomputing, 2011,74 ( 14-15) :2284-2290.
  • 4LI J, ALLINSON N M. A comprehensive review of current local features for computer vision [ J ]. Nourocomputing, 2008,71 ( 10- 12 ) : 1771-1787.
  • 5SCHMID C, MOHR R. Local gray value invariants for image retrieval [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(5) : 530-535.
  • 6OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24(7):971-987.
  • 7LOWED G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60 ( 2 ) : 91 - 110.
  • 8QIAN Xue-ming, HUA Xian-sheng, CHEN Ping. PLBP: an effective local binary patterns texture descriptor with pyramid representation [ J]. Pattern Recognition ,2011,44 ( 10-11 ) :2502-2515.
  • 9NANNI L, BRAHNAM S, LUMINIA. Combining different local binary pattern variants to boost performance [ J ]. Expert Systems with Applications, 2011,38 ( 5 ) : 6209 - 6216.
  • 10ZHANG B, SHAN S, CHEN X, et al. Histogram of Gabor phase patterns (HGPP) :a novel object representation approach for face recognition[J]. IEEE Trans on Image Processing, 2007,16 ( 1 ) : 57- 68.

共引文献8

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部