期刊文献+

矩阵奇异值和矩阵范数的保密计算服务协议

Secure computation service protocols for matrix singular value and norm
下载PDF
导出
摘要 鉴于目前尚未研究矩阵奇异值和范数的保密计算,提出了矩阵奇异值和范数的保密计算服务协议,将矩阵作变换后,求出矩阵特征值,进而保密地求出矩阵奇异值和范数。通过广泛接受的模拟范例证明了协议的保密性。协议中接受计算服务的一方可用很少的计算资源解决复杂的计算问题,保证较低的计算复杂性和通信复杂性。 Because there are no researches on secure computation of matrix singular value and norm, this paper proposed secure computation service protocols to securely compute the singular values and norm of a private matrix. It transformed the original matrix into another, computed its eigenvalues, singular values and norm. Using the well-accepted simulation paradigm, it proved that the protocols were private. In the protocols, the service receiver can solve complicated computation problems with limited computation source. The protocols have lower computation and communication overheads.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3413-3415,3425,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61272435) 中央高校基本科研业务费专项资金资助项目(GK201504017) 包头市科技局资助项目(2014S2004-2-1-15)
关键词 保密计算服务 协议 矩阵奇异值 矩阵范数 保密性 secure computation service protocol matrix singular value matrix norm privacy
  • 相关文献

参考文献17

  • 1Yao A C. Protocols fur secure computations[ C]//Proc of the 23rd IEEE Symposium on Foundations of Computer Science. Washington DC : IEEE Computer Society, 1982:160-164.
  • 2Goldreich O, Micali S, Wigderson A. How to play any mental game [ C]//Pmc of the 19th Annual ACM Conference on Theory of Com- puting. Piscataway: IEEE Press, 1987:218-229.
  • 3Goldwasser S. Multiparty computatiolls: past and present [ C ]//Proc of the 16th Annual ACM Symposium on Principles of Distributed Computing. New York : ACM Press, 1997 : 1-6.
  • 4Feigenbaum J. Take advantage of someone without having to trust him [ C ]//Advances in Cryptology Crypto. Berlin: Springer-Verlag, 1986:477- 488.
  • 5Cramer R, Damgaard I. Introduction to secure multiparty computa- tions [EB/OL]. 2005. http://homepages, cwi. nl/? eramer/.
  • 6Gnldreieh O. The fundamental of cryptography: basic applications [ M ]. London : Cambridge University Press, 2004.
  • 7李顺东,戴一奇,游启友.姚氏百万富翁问题的高效解决方案[J].电子学报,2005,33(5):769-773. 被引量:43
  • 8Du W L, Atallah M J. Secure multiparty computation problems and their applications: a review and open problems [ C ]//Proc of New Se- curity Paradigms Workshop. New York : ACM Press, 2001 : 11- 20.
  • 9Diffie W, ttellman M E. New direction in cryptography[J]. IEEE Trans on Information Theory, 1976,22(6) :644-654.
  • 10William P, Brian F, Saul T, et al. LU decomposition and its applica- tions [ M ]//'Numerical Recipes in Fortran : The Art of Scientific Com- puting. 2nd ed. London : Cambridge University, Press, 1992 : 34-42.

二级参考文献85

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部