期刊文献+

一种鲁棒的高精度摄像机标定方法 被引量:8

Robust accurate camera calibration method
下载PDF
导出
摘要 为了解决高精度摄像机标定过程中标定块制作难度大、标定方法对实验设备要求高、实验结果噪声鲁棒性差等问题,提出了一种新的标定模板及配套的标定算法。标定模板用十字网格代替经典的棋盘格,在强光照和强噪声环境下能够得到更精确的位置信息;标定时利用灰度加权求和的方法提取标定图像中心点,以该中心点为基准设置角点的匹配模板,通过计算相关程度确定其余角点坐标,并进一步确定精确坐标,最后利用BP神经网络来隐性标定摄像机参数。实验结果表明,该方法在强光照、强噪声的环境下也能获得高精度的标定结果,满足精密测量系统的自动化标定应用。 In order to solve the problem of the difficulty of making calibration block, the high requirements on the experimental equipment, the bad robustness against noise, this paper proposed a new calibration template and a calibration algorithm. The new template used cross grid instead of the classical checkerboard, thus got more accurate position information in strong light and noisy environment. This algorithm used the method for gray weighted summation to extract the center point of image, based on which the matching template was set. It determined the coordinates of other points by the related degree, and further determined precise coordinates. Finally, the method adopted BP neural network to calibrate camera parameters implicitly. The results indicate that the method can obtain precise calibration results even in strong light and noisy environment, which meets the requirement of automatic calibration applications in precision measurement system.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3489-3491,3495,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61174030)
关键词 计算机视觉 摄像机标定 标定模板 检测算法 精密测量 computer vision camera calibration calibration template detection algorithm precision measurement
  • 相关文献

参考文献10

  • 1李小利,阮秋琦,阮成雄.基于灰度直方图的加权模板匹配法在摄像机标定中的应用[J].北京交通大学学报,2013,37(2):22-26. 被引量:3
  • 2Tsai R. An efficient and accurate camera calibratian technique for 3 D machine vision [ C ]//Proc of International Conference on Computer Vision and Pattern Recognition. [ S. 1. ] : IEEE Press, 1986 : 364- 367.
  • 3Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera [ J]. International Journal of Computer Vision, 1992,8 (2) :123-151.
  • 4Liebowitz D, Zisserman A. Metric rectification for perspective images of planes[ C]//Proc of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. 1998:482-488.
  • 5Zhang Zhengyou. A flexible new technique for eamera calibration[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 ( 11 ) : 1330-1334.
  • 6Yu Lingli, Meng Peng, Zuo You, et al. Separated calibration of a camera and a Laser rangefinder for robotic heterogeneous sensors[ J]. International Journal of Advanced Robotic Systems, 2013,10: 367- 377.
  • 7An J, Shin S, Kim S, et al. A study on the factors for improving per- formance of the stereo camera for the TMS navigation system[ Jj. in- ternational Journal of Computer Science & Network Security, 2013,13(1) :13-17.
  • 8Lin Yimin, Lu Naiguang, Lou Xiaoping, et al. A novel approach to sub-pixel corner detection of the grid in camera calibration [ C ]//Proc of International Conference on Computer Application and System Mod- eling. 2010.
  • 9Bouguet J Y. Camera calibration toolbox for Matlab [ EB/OL ]. (2013-11-02). http://www, vision, caltech, edu/bouguetj/calib doe.
  • 10Funahashi K. On the approximate realization of continuous mapping by neural network [ J ]. Neural Networks, 1989,2 ( 3 ) : 183-192.

二级参考文献7

  • 1吴介,裘正定,李强.一种新的掌纹特征提取算法[J].北京交通大学学报,2006,30(2):89-92. 被引量:3
  • 2李娜,方卫宁.基于视频流的地铁人群目标识别[J].北京交通大学学报,2006,30(1):96-99. 被引量:6
  • 3Qin Dahui, Li Zhongwei, Wang Congjun. 3-D shape mea-surement of complex objects by combining color-codedfringe and neural network[j]. Tsinghua Science and Tech-nology, 2009,14(Sl):66-70.
  • 4Bradski G, Kaehler A. Learning OpenCV [ M] . UnitedStates of America : O'Reilly Media,2008:214 - 216.
  • 5Lu Zhaijun,Tian Hongqi,Liu Yinglong. Correlation match-ing algorithm based on dynamic gray threshold for catadiop-tric stereo vision [C]//IEEE International Conference onIntelligent Computing and Intelligent Systems. Changsha,2009:588-592.
  • 6Joung Youn Kim,Kim Lee Sup,Hwang Seung Ho. An ad-vanced contrast enhancement using partially overlappedsub-block histogram equalization[J] IEEE Transactions onCircuits and Systems for Video Technology, 2001, 11 (4):475-484.
  • 7万树平.一种具有区间数信息的多属性大群体决策方法[J].模式识别与人工智能,2011,24(3):340-345. 被引量:17

共引文献2

同被引文献97

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部