期刊文献+

基于差分纹理的人脸表情识别 被引量:4

Facial expression recognition based on differential texture features
下载PDF
导出
摘要 考虑到自动人脸表情识别背景复杂性问题,提出了一个新的表情识别方法——基于差分纹理的人脸表情识别,该方法在一定程度上能够有效地屏蔽掉个体人脸之间的差异,同时保留住人脸表情信息。首先选定一个标准人脸参考模型,该模型合理分布面部55个基准点,这些基准点主要分布于眼睛、鼻子、嘴和包含表情丰富的外部轮廓上;然后利用Delaunay三角剖分获取这些基准点的相对位置信息。对于人脸表情图像,首先利用主动形状模型(ASM)跟踪定位这55个基准点,然后利用三角剖分获得的相对位置信息,以及应用纹理映射技术将表情图像映射到标准人脸参考模型中,这样中性表情图像(不含表情信息的人脸)和非中性表情(六种基本表情)图像均被映射到同一大小的框架内,最后将它们的差值图像作为表情特征,称为DT(differential texture,差分纹理)特征。最后分别将JAFFE人脸表情库和CK人脸表情库中的部分样本组成混合数据并进行实验,结果表明提出的方法对六种基本表情具有较好的识别率,并且该方法优于传统的Gabor特征和LBP特征方法,并能扩展到动态图像中的表情识别中去。 Considering the problem of automatically recognizing facial expression with complex background, this paper proposed a novel method, which could extract expression features regardless of face information. First, the method selected a standard reference model, in which 55 facial landmark points were reasonably distributed by geometric information of the face. Those landmark points mainly located at facial contour, eyebrows, eyes, nose and lips, which constituted the convex hull of face model. Then it deployed the Delaunay triangulation to get the relative location information of those points in the standard reference model. It got 55 landmark points by using ASM location for neutral expression and non-neutral expression, and applied the relation location information and texture mapping technology to those expression images. After the above processes, all face images were mapped to a standard reference framework. The difference between neutral expression and non-neutral expressions could be formed to one vector as facial expression features called DT features. In order to verify the effectiveness of the proposed method, it conducted 6 kinds of facial expression recognition experiments on JAFFE database and Cohn-Kanade database. The experiments show that this method has higher recognition rate for expression recognition. It also compared this method with other conventional feature extraction method, namely LBP (local binary pattern) features and Gabor features, the recognition rates show that this method outperforms these methods. This method can also be extended to facial expression recognition of dynamic image sequences.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3504-3507,共4页 Application Research of Computers
基金 广西自然科学基金资助项目(2013GXNSFBA019278) 广西高等学校科研资助项目(2013YB032) 广西师范大学博士启动基金资助项目 药用资源化学与药物分子工程教育部重点实验室资助课题(CMEMR2014-B15) 广西自动检测技术与仪器重点实验室基金资助项目(YQ14202)
关键词 面部表情 DELAUNAY三角剖分 差分纹理特征 主动形状模型 facial expression Delaunay triangulation differential texture features active shape model(ASM)
  • 相关文献

参考文献13

  • 1Fasel B, Luettin J. Automatic facial expression analysis: a survey [J]. Patters, Recognition,2003,36( 1 ) :259-275.
  • 2Pantic M, Rothkrantz L. Automatic analysis of facial expressions : the state of art[ J]. IEEE Trans on Pattern Analysis and Machine In- telligence ,2000,22 (12) : 1424-1445.
  • 3Zhi Ruicong, Flied M, Ruan Qiuqi, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Trans on Systems, Man, and Cyberne- tics, Part B : Cybernetics,2011,41 ( 1 ) :38-52.
  • 4Bashyal S, Venayagamoorthy G K. Recognition of fac~-al expressions using Gabor wavelets and learning vector quantization [ J]. Enginee- ring Applications of Artificial Intelligence, 2008,21 ( 7 ) : 1056- 1064.
  • 5王冲鶄,李一民.基于Gabor小波变换的人脸表情识别[J].计算机工程与设计,2009,30(3):643-646. 被引量:6
  • 6Shi Dongchen$, Cai Fang, Du Guangyi. Facial expression recognition based on Gahor wavelet phase features [ C ~//Proc of the 7th Interna- tional Conference on Image and Graphics. [ S. L ] :IEEE Press,2013 : 520- 523.
  • 7Shan Caifeng, Gong Shaogang, Mcowan P W. Facial expression reco- gnition based on local binary patterns : a comprehensive study [ J ~. Image and Vision Computing,2009,27(6) :803-816.
  • 8Liao Shu, Chung A C S. Texture classification by using advanced local binary patterns and spatial distribution of dominant pattel~as [ C ]// Proc of IEEE International Conference on Acoustics, Speech and Sig- nal Processing. [ S. 1. ] : IEEE Press,2007 : 1221-1224.
  • 9Zhao Guoying, Pietikainen M. Dynamic texture recognition using lo- cal binary patterns with an application to facial expressions [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 (6) :915-928.
  • 10Zhao Quanyou, Pan Baochang, Pan Jianjia, et al. Facial expression recognition based on fusion of Gabor and LBP features [ C ]//Proc of International Conference on Wavelet Analysis and Pattern Recogni- tion. [ S. 1. ] : IEEE Press,2008:362- 367.

二级参考文献9

共引文献5

同被引文献22

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部