期刊文献+

基于颜色直方图的木材单板图像检索技术研究 被引量:7

Image retrieval techniques of wood veneers based on color histogram
原文传递
导出
摘要 为解决市场上常见木材单板的快速识别问题,开发基于图像比对的常用树种木材单板的识别技术,使常用树种木材单板的识别变得简单,以常见装饰单板的彩色图像为对象,颜色直方图为单板颜色的量化指标,利用相关系数算法,开展了RGB、HSV和Gray颜色空间下木材单板图像的检索技术研究。结果表明:在建立常见树种木材单板图像数据库的基础上,利用颜色直方图可以对木材单板进行检索及识别;不同颜色空间下,RGB和HSV直方图检索准确率优于Gray直方图,前两者准确率为99%,而后者仅为88%。分析认为,基础数据库中各树种标准图片的选取是影响检索准确率的重要因素,各树种的标准图片应包含该树种最大的颜色差异,且能明显区别于其他树种。 To solve the problem of quick identification of typical wood veneers,color images of common decorative veneers were studied using color histogram as quantitative index of veneer colors,and image retrieval techniques of wood veneers in terms of RGB,HSV and Gray color spaces were investigated based on the algorithm of correlation coefficient,in order to develop a new wood veneer recognition technique based on image comparison allowing for simplification of the recognition process. Result showed that the color histogram could be used for retrieving and recognizing wood veneers once the basic image database of the common wood species veneer was set up. The histogram retrieval accuracies of RGB and HSV are better than Gray histogram,and the accuracy of the first two is 99%,but the latter is only 88%. The selection of representative images of wood species in the basic database is an important factor which affects the retrieval accuracy. Moreover,the selected representative image of each species should contain its maximum color difference,differing significantly from other species.
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期129-134,共6页 Journal of Nanjing Forestry University:Natural Sciences Edition
基金 中央级公益性科研院所基本科研业务费专项资金项目(CAFINT2013C06)
关键词 木材单板 颜色直方图 颜色空间 图像检索 木材图片基础数据库 wood veneer color histogram color space image retrieval basic database of wood image
  • 相关文献

参考文献17

  • 1Kam A H. Content based image retrieval through object extraction and quering[ C ]//Proceeding of the IEEE Workshop on Content- based Access of Image and Video Libraries, 2000.
  • 2Datta R, Li J, Wang J Z. Content-based image retrieval approa- ches and trends of the new age [ C ]//Proceedings of the 7th Inter- national Workshop on Multimedia Information Retrieval. ACM, 2005,7 ( 11 ) : 253-262.
  • 3樊昀,王润生.面向内容检索的彩色图像分割[J].计算机研究与发展,2002,39(3):376-381. 被引量:21
  • 4Pun C M, Wong C F. Fast and robust color feature extraction for content-based image retrieval [ J ]. International Journal of Ad- vancements in Computing Technology, 2011, 3(6) :75-83.
  • 5Kim N W, Kim T Y, Choi J S. Edge-based spatial descriptor using color vector angle for effective image retrieval [ J ]. Modeling Decisions for Artificial Intelligence, 2005, 3558: 365-375.
  • 6Li X L. Image retrieval based on perceptive weighted color blocks [ J ]. Pattern Recognition Letters, 2003,24 (12) : 1935-1941.
  • 7宁晶晶,周海英.压缩基础上利用纹理进行图像检索的方法研究[J].计算机应用与软件,2011,28(6):254-256. 被引量:5
  • 8Kao C C, Lai Y T, Lin C H. An efficient reflection invariance re- gion-based image retrieval framework [ J ]. International Journal of Imaging Systems and Technology, 2010, 20(2) : 155-161.
  • 9杨旭,杨新,田雪.一种鲁棒的二维图像形状检索方法[J].模式识别与人工智能,2010,23(5):738-744. 被引量:3
  • 10I Fauqueur J, Boujemaa N. Region-based image retrieval: fast coarse segmentation and fine color description [ J ]. Journal of Vision Languages and Computing, 2004, 15( 1 ) :69-95.

二级参考文献56

共引文献66

同被引文献60

引证文献7

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部