期刊文献+

颜色解耦光响应非均匀性噪声融合凸优化的图像伪造检测算法

Study on Image Forgery Detection Algorithm Based on Color Decoupled Photo Response Non-Uniformity Noise Integration with Convex Optimization
下载PDF
导出
摘要 当前基于光响应非均匀性噪声的伪造检测算法使用了滤色器阵列,容易产生颜色插值噪声,严重影响了其噪声的提取精度及相关性检测的分辨率;且没有考虑源相机的相关性,借助局部像素统计决策进行目标识别,削弱了算法检测精度。提出了颜色解耦光响应非均匀性(,CD-PRNU color decoupled photo response non-uniformity)噪声融合凸优化方案的图像伪造检测算法。设计颜色解耦光响应非均匀性噪声;并构造了CD-PRNU噪声残留的数学计算模型;再嵌入Bayes原理,形成贝叶斯最小风险决策,利用图像全局像素,完成伪造目标检测。同时提出凸优化方案,将真伪决策演变为凸问题,降低算法复杂度。仿真结果显示:该算法能够更有效地检测出微小尺寸伪造目标,且其误检率更低。 Low detection precision and correlation resolution are induced by using local pixels to make decision authenticity, and ignoring the strong spatial dependence of the source in current image forgery detection algorithms based on photo response non-uniformity(CD-PRNU) noise, the small real area of forgery can not be detected. Therefore the image forgery detection algorithm based on color decoupled photo response non-uniformity noise integration with convex optimization mechanism is proposed. The CD-PRNU noise is designed, and the mathematical calculation model of CD-PRNU noise residual is constructed. The Bias minimum risk decision is formed by introducing the Bayes rules, and combining the decisions of all pixels, the forgery is detected. Taking image forgery detection into convex optimization problem, the convex optimization mechanism is designed to improve the detection efficiency. Simulation results show that this algorithm can detect the small size forgery area, and has lower detection error rate compared with current algorithm.
作者 孙力 黄正谦
出处 《测控技术》 CSCD 2015年第10期30-34,共5页 Measurement & Control Technology
基金 浙江省自然科学基金(Q12A040019) 浙江省教育厅科技计划项目(2013111557)
关键词 图像伪造检测 滤色器阵列 凸优化机制 颜色解耦光响应非均匀性噪声 贝叶斯规则 image forgery detection color filter array convex optimization mechanism color decoupled photoresponse non-uniformity noise Bayes rule
  • 相关文献

参考文献14

  • 1Birajdar G K,Mankar V H. Digital image forgery detection using passive techniques : A survey [ J ] . Digital Investigation,2013,10(3) :226 -245.
  • 2Chierchia G,Cozzolino D,Poggi D,et al. Guided filtering forPRNU-based localization of small-size image forgeries[ C]//IEEE International Conference on Acoustics,Speech and Sig-nal Processing. 2014 :6231 -6235.
  • 3Chierchia G,Poggi G,Sansone C,et al. PRNU-based forgerydetection with regularity constraints and global optimization[C]//15,h IEEE International Workshop on Multimedia Sig-nal Processing Multimedia Signal Processing. 2013 :236 -241.
  • 4Hussain M,Muhammad M , Saleh S Q, et al. Image forgerydetection using multi-resolution weber local descriptors [ J ].Proceedings of Eurocon 2013, International Conference onComputer as a Tool. 2013 : 1570 - 1577.
  • 5Nakamura J. Image Sensors and Signal Processing for DigitalStill Cameras[ M]. Boca Raton,FL:Taylor & Francis Group,2006;87 -92.
  • 6Lynch G, Shih F Y, Liao H Y M. An efficient expandingblock algorithm for iamge copy-move forgery detection [ J ].Information Sciences ,2013 ,239 :253 -265.
  • 7Fridrich J. Sensor Defects in Digital Mmage Forensic[ M ]//Digital Image Forensics. Springer New York,2013 : 179 -218.
  • 8Mohammadi A, Taban M R, Abouei J, et al. Cooperativespectrum sensing against noise uncertainty using Neyman-Pearson lemma on fuzzy hypothesis test [ J ]. Applied SoftComputing,2013,13(7) :3307 -3313.
  • 9Picco M,Sourlas N. On the phase transition of the 3D randomfield Ising model[ J]. Journal of Statistical Mechanics:Theoryand Experiment,2014,10(7) :217 -229.
  • 10Chierchia G, Parrilii S, Poggi G, et al. On the Influence ofDenoising in PRNU based Forgery Detection[ C]//Proceed-ings of the 2nd ACM Workshop on Multimedia in Forensics,Security and Intelligence. 2010 : 117 - 122.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部