期刊文献+

四元数理论及其在坐标转换中的应用 被引量:7

The Quaternion Theory and Its Application in Coordinate Transformation
下载PDF
导出
摘要 四元数在三维空间基准的转换中已得到广泛应用,但其理论依据并不是很清晰。本文在理论上研究了四元数的一些基本性质,证明了坐标旋转变换等价于四元数的正交变换。利用基本四元数的定义,证明了适用于坐标旋转的所有四元数都是由若干个基本四元数的格拉斯曼乘积得到的。同时,给出了四元数与坐标旋转矩阵之间的理论关系。 The quaternion has been widely used in three dimensional space datum transformation,but its theoretical basis is not very clear.This paper studies some basic properties of the quaternion theory,and it proves that coordinate rotation transformation is equivalent to the orthogonal transformation of quaternion.Using the definition of basic quaternions,it establishes that all quaternions applied to coordinate rotational transformation are made by several basic quaternion's Glassman product.At the same time,the theoretical relationship between quaternions and coordinate rotation matrix are given.
出处 《大地测量与地球动力学》 CSCD 北大核心 2015年第5期807-810,共4页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(41474021 41172199)
关键词 四元数 基本四元数 格拉斯曼乘积 坐标转换 quaternion the basic quaternion Glassman product coordinate transformation
  • 相关文献

参考文献15

  • 1Goldman R. Understanding Quaternions [ J ]. GraphicalModels’ 2011,73:21-49.
  • 2Pujol J. On Hamilton ^ s Nearly-Forgotten Early Work onthe Relation between Rotations and Quaternions and on theComposition of Rotations [ J ]. American MathematicalMonthly, 2014, 121(6): 515-522.
  • 3Tsougenis E D, Papakostas G A,Koulouriotis D E,et al.Adaptive Color Image Watermarking by the Use of Quater-nion Image Moments [J]. Expert Systems with Applica-tions, 2014, 41(14):6 408-6 418.
  • 4Gai S, Wan M H, Wang L, et al. Reduced QuaternionMatrix for Color Texture Classification[J]. Neural Compu-ting Applications, 2014,25(3-4):945-954.
  • 5Cheinokov Y N. Quaternion Regularization and TrajectoryMotion Control in Celestial Mechanics and Astrodynamics[J]. Cosmic Research, 2014,52(4): 304-317.
  • 6Wang Y B, Wang Y J, Wu K. et al. A Dual QuaternionBased,Closed-Form Pairwise Registration Algorithm forPoint Clouds[J]. Journal of Photogrammetry and RemoteSensing, 2014, 94: 63-69.
  • 7Akila L, Roopkumar R. A Natural Convolution of Quater-nion Valued Functions and Its Applications [ J ]. AppliedMathematics Computation, 2014, 242 :633-642.
  • 8Tadano S,Takeda R, Miyagawa H. Three DimensionalGait Analysis Using Wearable Acceleration and Gyro Sen-sors Based on Quaternion Calculations[Jl. Sensors, 2013 ,13(7):9 321-9 343.
  • 9He Z H,Wang Q W. A Real Quaternion Matrix Kquationwith Applications [ J ]. Linear Multilinear Algebra,2013, 61(6) :725-740.
  • 10Shen Y Z,Chen Y,Zheng D H. A Quaternion-Based Geo-detic Datum Transformation Algorithm[J]. Journal of Ge-odesy. 2006, 80(5) :233-239.

二级参考文献12

共引文献18

同被引文献65

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部