期刊文献+

改进的容积卡尔曼滤波(CKF)算法在短期负荷预测中的应用 被引量:2

An Improved CKF Algorithm for Short-Term Load Forecasting
下载PDF
导出
摘要 电力系统短期负荷可视为非线性系统的输出,为了准确地预测电力系统短期负荷,引入了容积卡尔曼滤波(CKF)方法,并通过估计和修正模型中的状态转移矩阵,得到改进的自适应CKF算法,以适应非线性系统的时变性.用某地秋季22d的历史负荷数据建模对未来9d负荷进行预测,仿真结果证明改进的CKF算法预测电力系统短期负荷是实用而有效的. The short term load of power system can be regarded as the output of nonlinear systems.For the sake of to increase the accuracy of short term load forecasting,cubature Kalman filter(CKF)is introduced into the field of short term load forecasting.Based on estimating and changing the state transition matrix,an improved CKF is proposed to adapt to environmental disturbances and time-varying processes;therefore better forecasting results could be acquired.Historical load data of 22 days in autumn are used to establish the load forecasting model to predict the load of future 9days.The results show that the improved CKF is practical and effective.
出处 《三峡大学学报(自然科学版)》 CAS 2015年第5期74-77,共4页 Journal of China Three Gorges University:Natural Sciences
关键词 短期负荷预测 非线性系统 卡尔曼滤波 容积卡尔曼滤波 short-term load forecasting nonlinear systems Kalman filter cubature Kalman filter(CKF)
  • 相关文献

参考文献7

二级参考文献52

共引文献350

同被引文献19

引证文献2

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部