期刊文献+

基于MCMC模拟的索赔次数模型

Applications of MCMC Simulation to Claim Counts Models
下载PDF
导出
摘要 对非寿险保险公司来说,精确预测索赔次数是保险费率厘定中的一个重要环节。传统上对索赔次数模型的估计是基于极大似然估计方法,模型参数是从数据中估计而来。但是由于造成索赔次数的原因很多,索赔次数服从的具体分布通常很复杂,仅用已知数据估计模型参数存在很大偏差。本文从另一角度,基于MCMC方法估计索赔次数模型。研究表明,利用MCMC模拟可以动态模拟出未知参数的后验分布,从而提高索赔次数模型的估计精度。 Precise prediction of claims is important in insurance ratemaking in non--life insurance companies. In tradition, claim counts model is estimated by maximum likelihood estimation method, so parameters are estimated from data. But there are many reasons inducing claim counts. And distribu- tions of claim counts are usually complex. So this leads to estimators of parameters that are often biased. In this paper, we apply MCMC simulation to estimate parameters of claim counts models. It indi- cates that MCMC method can dynamically simulate parameter posterior distribution and improve estima-tion precision.
作者 康萌萌
出处 《保险职业学院学报》 2015年第5期21-26,共6页 Journal of Insurance Professional College
关键词 MCMC模拟 负二项分布 广义泊松分布 零膨胀泊松模型 MCMC Simulation Negative Binomial distribution Generalized Poisson distribution Zero--inflated Poisson model
  • 相关文献

参考文献10

  • 1Carlin, B. P.,1992. State Space Modeling of Non-Standard Actuarial Time Series [J]. Insurance: Math-ematics and Economics,11:209 - 222.
  • 2Scollnik, D. P. M.,1993. A Bayesian Analysis of aSimultaneous Equations Model for Insurance Rate -Making [J ]. Insurance : Mathematics and Economics.12~ 265--286.
  • 3Scollnik, D. P. M. 1995. Bayesian Analysis of TwoOverdispersed Poisson Models. Biometrics 51: 1117-26.
  • 4Scolinik,D. P. M. 1996. An Introductionto MarkovChain Monte Carlo Methods and Their Actuarial Ap-plications. Proceeding of the Casualty Actuarial Society83: 114-165.
  • 5Makov, U. E.,Smith, A. F. M.,Liu,Y. H.,1996.Bayesian Methods in Actuarial Science [J]. The Statis-tician, 45:503 - 515.
  • 6Pai,J.,1997, Bayesian Analysis of Compound LossDistributions [J]. Journal of Economics, 79: 129-146.
  • 7林静,韩玉启,朱慧明.一种基于MCMC稳态模拟的贝叶斯索赔校正模型[J].数量经济技术经济研究,2005,22(10):92-99. 被引量:4
  • 8林静,韩玉启,朱慧明.基于MCMC稳态模拟的贝叶斯经验费率厘定信用模型[J].中国管理科学,2006,14(2):33-38. 被引量:5
  • 9刘乐平,袁卫,张琅.保险公司未决赔款准备金的稳健贝叶斯估计[J].数量经济技术经济研究,2006,23(7):82-89. 被引量:8
  • 10Jimmy Fox, Scott Wood and Gabriele Villarini. A soilunmixing model for the WinBUGS software. (FinalReport for Bayesian Statistics Class, Fall 2004).

二级参考文献31

  • 1刘乐平,袁卫.现代贝叶斯分析与现代统计推断[J].经济理论与经济管理,2004,24(6):64-69. 被引量:49
  • 2林静,韩玉启,朱慧明.一种基于MCMC稳态模拟的贝叶斯索赔校正模型[J].数量经济技术经济研究,2005,22(10):92-99. 被引量:4
  • 3毛泽春,刘锦萼.免赔额和NCD赔付条件下保险索赔次数的分布[J].中国管理科学,2005,13(5):1-5. 被引量:24
  • 4David P. M. Scollnik, The Bayesian Analysis of Two Generalized Poisson Models for Claim Frequency Data Utilizing Markov Chain Monte Carlo Methods[J]. Actuarial Research Clearing House, 1995(1) : 339-256.
  • 5Makov, U. E. , A. F. M. Smith, Y- H Liu. , Bayesian Methods in Actuarial Science [J]. The Statistician. 1996, (45) : 503-515.
  • 6Pai, J. Bayesian Analysis of Compound Loss Distributions[J].Journal of Economics. 1997, (79) : 129-146.
  • 7Carlin, B. P. , State Space Modeling of Non-Standard Actuarial Time Series [J].Insurance:Mathematics and Economics. 1992, (11): 209-222.
  • 8David P. M. Scollnik, An Introduction to Markov Chain Monte Carlo Methods and Their Actuarial Applications[J]. Proceedings of the Casualty Actuarial Society, 1996, (83) : 114-165.
  • 9David P. M. Scollnik, Chl the Analysis of the Truncated Generalized Poisson Distribution Using a Bayesian Method [J]. ASTIN Bulletin, 1998. 28 (1): 135-152.
  • 10David P. M. Scollnik, Actuarial modeling with MCMC and BUGS [J]. North American Actuarial Journal, Vol 5 (2):96-125.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部