期刊文献+

基于用户偏好加权的混合网络推荐算法 被引量:9

Hybrid recommendation by combining network-based algorithm and user preference
原文传递
导出
摘要 基于热传导或物质扩散理论的推荐算法首先利用网络结构得到对象间推荐关系,然后根据对象间关系预测用户喜欢的对象,而忽略了用户偏好。为了弥补这个缺陷,根据用户已选择对象的标签,利用TF-IDF方法构建用户偏好模型,以用户在预测对象标签上的平均偏好作为对该对象的偏好程度,采用加权方法与现有基于网络推荐算法混合运算。经在基准数据集Movie Lens上测试表明,通过与目前效果最好的几种基于网络推荐算法进行加权混合运算,推荐结果在推荐精度、个性化、多样化等多种评价指标方面均比原有算法有明显提高。 Recommendation algorithms based on heat conduction or mass diffusion first obtain the relationship between objects according to network structure,then predict the user's favorite objects based on these relationships,but these algorithms ignore user's preference. In order to overcome this defect,the TF-IDF approach was used to construct user's preference according to the tags contained in the objects selected by user,and the mean of preference of object's tags was taken as the preference of the object,then a hybrid recommendation model was proposed by combining networkbased algorithm and the user preference model. The benchmark datasets,M ovie Lens,was used to evaluate our algorithm,and the experimental results demonstrate that hybrid algorithm can significantly improve accuracy,diversification and personalization of recommendations.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第9期29-35,41,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61202271) 国家社会科学基金资助项目(13CGL130) 教育部人文社会科学研究青年基金资助项目(13YJCZH258) 广东省自然科学基金资助项目(S2012040007184 S2013010013050) 广东省普通高校科技创新项目(2013KJCX0069 2012KJCX0049)
关键词 基于网络推荐 标签 TF-IDF 个性化推荐 network-based recommendation tag TF-IDF personalized recommendation
  • 相关文献

参考文献17

  • 1ZHOU T, REN J, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):6116-6123.
  • 2ZHOU T, JIANG L L, SU R Q. Effect of initial configurationon network-based recommendation[J]. Europhys Lett, 2008, 81(5):8004-8008.
  • 3PAN X, DENG G S, LIU J G. Weighted bipartite network and personalized recommendation[J]. Physics Procedia, 2010, 3(5):1867-1876.
  • 4LIU J G, ZHOU T, WANG B H, et al. Effects of user tastes on personalized recommendation[J]. International Journal of Modern Physics C, 2009, 20(12):1925-1932.
  • 5ZHOU T, SU R Q, LIU R R, et al. Accurate and diverse recommendations via eliminating redundant correlations[J]. New J Phys, 2009, 11(12):3008-3026.
  • 6ZHANG Y C, BLATTNER M, YU Y K. Heat conduction process on community networks as a recommendation model[J]. Phys Rev Lett, 2007, 99(15):4301-4305.
  • 7LIU J G, ZHOU T, GUO Q. Information filtering via biased heat conduction[J]. Phys Rev E, 2011, 84(3):7101-7105.
  • 8QIU T, WANG T T, ZHANG Z K, et al. Heterogeneity involved network-based algorithm leads to accurate and personalized recommendations[J]. Physics and Society, 2013, arXiv:1305.7438vl.
  • 9ZHOU T, KUSCSIK Z, LIU J G, et al. Solving the apparent diversity accuracy dilemma of recommender systems[C]//Proceedings of the National Academy of Sciences of the United States of America. Washington: Natl Acad Sciences, 2010, 107:4511-4515.
  • 10SCOTT A G, BERNARDO A H. Usage patterns of collaborative tagging systems[J]. Journal of Information Science, 2006, 32(2):198-208.

二级参考文献1

共引文献19

同被引文献47

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部