期刊文献+

基于有指导LDA用户兴趣模型的微博主题挖掘 被引量:5

Micro-blogging topic mining based on supervised LDA user interest model
原文传递
导出
摘要 用户发布的微博内容能够体现用户兴趣,微博中用户的转发、评论、回复、他人评论等微博行为对用户兴趣具有很强的指导作用。为了有效利用用户微博行为,提出了一种基于有指导LDA(latent dirichlet allocation)的微博内容用户兴趣建模方法。首先通过分析对微博的转发、评论、回复、他人评论这4个因素对用户微博兴趣主题的影响,定义了4种约束关系;然后基于用户微博内容,将4种约束关系融合到LDA模型中构建有指导的LDA微博主题生成模型,最后得到用户的微博主题分布,从而获得用户兴趣模型。实验结果表明,相比LDA模型,该方法的准确率有很大提高,引入4种信息对微博用户兴趣发现有非常重要的指导作用。 The content of users M icro-blogging can reflect users' interests. Forwarding,commenting,replying and other behavior about M icro-blogging have a strong guiding role to discovering users' interests. In order to using M icro-blogging behavior effectively,we proposed users' interest modeling method based on supervised-LDA M icro-blogging contents. First of all,through analyzing the impact elements,including forwarding,commenting,replying,and other behavior,four constraint relations were defined. Second,based on the contents of M icro-blogging,the four constraint relations were put into the LDA model and the supervised-LDA M icro-blogging theme generation model were constructed. And then the distribution of the users' theme and the users' interests' model were obtained. The experimental results showthat compared with the LDA method,this model has high accuracy,and the four introduced guiding information have a significant role in discovering M icro-blogging users' interests.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第9期36-41,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61175068)
关键词 微博内容 兴趣挖掘 微博行为 有指导LDA Micro-blogging content interest in mining Micro-blogging behavior supervised LDA
  • 相关文献

参考文献12

  • 1CLAYPOOL M, LE P, WASEDA M, et al.Implicit interest indicators[C]//Proceedings of the 6th International Conference. New York:ACM, 2001:30-40.
  • 2SHEN Xuehua, TAN Bin, ZHAI Chengxiang. Implicit user modeling for personalized search[C]//Proceedings of the 2005 ACM CIKM International Conference on Information and Knowledge Management. New York:ACM, 2005, 10(5):5-6.
  • 3林鸿飞,杨元生.用户兴趣模型的表示和更新机制[J].计算机研究与发展,2002,39(7):843-847. 被引量:23
  • 4WENG Jianshu, LIM E P, JIANG Jing, et al.TwitterRank:finding topic-sensitive influential twitterers[C]//Proceedings of the 3th ACM International Conference on Web Search and Data Mining.New York:ACM, 2010:261-270.
  • 5董婧灵,李芳,何婷婷,等.基于LDA模型的文本聚类研究[C]//中国计算语言学研究前沿进展,北京:清华大学出版社,2011:455-461.
  • 6姚全珠,宋志理,彭程.基于LDA模型的文本分类研究[J].计算机工程与应用,2011,47(13):150-153. 被引量:56
  • 7张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802. 被引量:166
  • 8BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
  • 9GRIFFITHS T, STEYVERS M. Finding scientific topics[C]//Proceedings of the National Academy of Sciences of the United States America. [S.l.]: [s.n.], 2004, 101:5228-5235.
  • 10ROSEN-ZVI M, GRIFITHS T, STEYVERS M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. Virginia: AUAI Press, 2004:487-494.

二级参考文献31

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:388
  • 2伍建军,康耀红.文本分类中特征降维方式的研究[J].海南大学学报(自然科学版),2007,25(1):62-66. 被引量:4
  • 3[1]E Voorhees, D Harrman. Overview of the eighth text retrieval conference. In: Proc of the 8th Text Retrieval Conf. Gaithersburg, Margland: NIST Press, 2000. 1~23
  • 4[2]T Kindo. A adaptive personal information filtering system that organizes personal profiles automatically. In: Proc of the 15th Int'l Joint Conf on Artificial Intelligence, IJCAI'97. NAGOYA, Aichi, Japan, 1997. 716~721
  • 5[3]J A Konstan. GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM, 1997, 40(3): 77~87
  • 6[4]D Oard D, G Marchionini. A conceptual framework for text filtering. 1997. http://www.cs.umd.edu/TRs/authors/Gary〖KG-*8〗Marchionini.html
  • 7[9]G Salton, J Allan, C Buckley. Approaches to passage retrieval in full text information systems. In: Proc of the 16th Annual Int'l SIGIR Conf. Pittsburgh, PA, 1993
  • 8Deerwester S,Dumais S T A.lndexing by latent semantic analysis[J] Journal of the Society for Information Science,1990,41(6).
  • 9Blei D,Ng A,Jordan M.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(4/5).
  • 10Griffiths T L,Steyvers M.Finding scientific topics[J].PNAS,2004,101(1).

共引文献384

同被引文献36

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部