摘要
给出了k-连通图中最长圈上的可收缩边的数目,得到如下结果:任意断片的阶至少为「k/2」+1的k-连通图中最长圈上至少有3条可收缩边;更进一步,若该k-连通图中存在哈密顿圈,则哈密顿圈上至少有6条可收缩边。
The number of contractible edges of longest cycles in k-connected graphs is given. The conclusions are that if every fragment of a k-connected graph has an order at least 「k /2」 + 1,then there exist at least three contractible edges on the longest cycle of this graph. Furthermore,if this graph has a hamiltonian cycle,then there exist at least six contractible edges on the hamiltonian cycle.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2015年第10期27-31,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11471193)
关键词
K-连通图
可收缩边
最长圈
哈密顿圈
k-connected graph
contractible edge
longest cycle
hamiltonian cycle