期刊文献+

k-连通图中最长圈上可收缩边的数目 被引量:1

On the number of contractible edges of longest cycles in k-connected graphs
原文传递
导出
摘要 给出了k-连通图中最长圈上的可收缩边的数目,得到如下结果:任意断片的阶至少为「k/2」+1的k-连通图中最长圈上至少有3条可收缩边;更进一步,若该k-连通图中存在哈密顿圈,则哈密顿圈上至少有6条可收缩边。 The number of contractible edges of longest cycles in k-connected graphs is given. The conclusions are that if every fragment of a k-connected graph has an order at least 「k /2」 + 1,then there exist at least three contractible edges on the longest cycle of this graph. Furthermore,if this graph has a hamiltonian cycle,then there exist at least six contractible edges on the hamiltonian cycle.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第10期27-31,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11471193)
关键词 K-连通图 可收缩边 最长圈 哈密顿圈 k-connected graph contractible edge longest cycle hamiltonian cycle
  • 相关文献

参考文献7

  • 1BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The Macmillan Press Ltd, 1976.
  • 2TUTTE W T. A theory of 3-connected graphs[J]. Indag Math, 1961, 23:441-455.
  • 3THOMASSEN C. Non-separating cycles in k-connected graphs[J]. Graph Theory, 1981, 5:351-354.
  • 4EGAWA Y. Contractible edges in n-connected graphs with minimum degree greater than or equal to[5n/4][J]. Graphs and Combinatorics, 1990, 7:15-21.
  • 5KRIESELL M. A degree sum condition for the existence of a contractible edge in a k-connected graph[J]. Comb Theory Ser, 2001, B82:81-101.
  • 6KRISELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[J]. Graphs and Combinatorics, 2002, 18(1):1-30.
  • 7杨朝霞.某些5-连通图中最长圈上的可收缩边[J].山东大学学报(理学版),2008,43(6):12-14. 被引量:7

二级参考文献1

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部