期刊文献+

基于鉴别流形的不相关稀疏投影非负矩阵分解

Discriminative manifold-based uncorrelated sparse projective nonnegative matrix factorization
原文传递
导出
摘要 基于流形学习、稀疏表示和鉴别分析理论,提出一种基于鉴别流形的统计不相关稀疏投影非负矩阵分解(discriminative manifold—based uncorrelated sparse projective NMF,DMUPNMF)算法。该方法继承了线性投影NM F优点,充分利用了数据集的局部和非局部几何鉴别信息,能够从数据集中抽取不相关鉴别特征,且分解结果具有良好的数据局部表示和稀疏性;给出多乘更新规则求解优化算法并证明其收敛性,还给出投影梯度优化算法以提高收敛速度。为解决大规模数据处理中计算量和存储空间过大问题,提出一种从训练集选取少量代表性样本学习DMUPNMF方法。大量的实验表明,该算法优于现有的改进NMF算法。 Inspired by manifold learning,sparse representation and discriminant analysis theories,a discriminative manifold-based uncorrelated sparse projective nonnegative matrix factorization( DM UPNM F) algorithm was developed in this work. By exploiting local and nonlocal geometric discriminant information of the data and the merits of the linear projective NM F,the extracted features were approximately uncorrelated and the decomposition results of DM UPNM F were sparse and better part-based representation. Multiplicative updating rules were introduced to slove the optimization problem of DM UPNM F and its convergence proof was given as well. Moreover,projected gradient decent optimization method was developed to enhance the convergence speed of the method. An approach was proposed to select the informative data points from training dataset,which reduces the computation burden and storage space resulted from a large amount of objects for traditional NM F. Simulations demonstrated that the proposed algorithm outperforms the state-ofthe-art algorithms on real-w orld problems.
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第5期1-12,28,共13页 Journal of Shandong University(Engineering Science)
基金 国家重点基础研究发展计划(973计划)资助项目(2012CB720505) 国家自然科学基金资助项目(61273167)
关键词 非负矩阵分解 鉴别流形 统计不相关特征 稀疏性 投影梯度优化 nonnegative matrix factorization discriminative manifold uncorrelated features sparseness projected gradient optimization
  • 相关文献

参考文献40

  • 1CHEN Yan, ZHANG Jiemi, CAI Deng, et al. Nonnegative local coordinate factorization for image representation[J]. IEEE Transactions on Image Processing, 2013, 22(3):969-980.
  • 2GUAN Naiyang, TAO Dacheng, LU Zhigang, et al. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent[J]. IEEE Transactions on Image Processing, 2011, 20(7):2030-2048.
  • 3ZHENG C H, HUANG D S, ZHANG L, et al. Tumor clustering using nonnegative matrix factorization with gene selection[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 15(2):599-607.
  • 4CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2011, 23(6):902-913.
  • 5YOO Jiho, CHOI Seungjin. Orthogonal nonnegative matrix tri-factorization for co-clustering:multiplicative updates on Stiefel manifolds[J]. Information Processing and Management, 2010, 46(5):721-732.
  • 6LEE Seokjin, PARK Sangha, SUNG Koengmo. Beamspace-domain multichannel nonnegative matrix factorization for audio source separation[J]. IEEE Signal Processing Letters, 2012, 19(1):43-47.
  • 7ZHOU Zhou, LIANG Ruiyu, ZHAO Li, et al. Unsupervised learning of phonemes of whispered speech in a noisy environment based on convolutive non-negative matrix factorization[J]. Information Sciences, 2014(257):115-126.
  • 8LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geomscience and Remote Sensing, 2013, 51(5):2815-2926.
  • 9ZHAO Miao, BU Jiajun, CHEN Chun, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5):1327-1337.
  • 10LIANG Z. Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications[J]. Signal Process, 2010, 90 (7):2150-2163.

二级参考文献140

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部