期刊文献+

小球藻高浓度厌氧消化产甲烷实验研究 被引量:2

Experimental Research on Anaerobic Digestion of Chlorella to Produce Methane
下载PDF
导出
摘要 选择了微藻研究中使用较多的小球藻,对其产甲烷性能进行了研究。厌氧消化产甲烷潜能(BMP)实验结果表明:小球藻厌氧消化产甲烷潜势达到461 m L/g。微藻生物质容易被厌氧微生物降解,能够将有机质(包括微藻油脂、蛋白质、糖类等细胞成分以及藻液中有机物)充分转化成沼气。半连续实验结果表明:运行CSTR反应器负荷率在2.25 kg/(m3·d)条件下,小球藻厌氧消化容积产气率达到1.1 m3/(m3·d),沼气中甲烷平均含量为62%,有机物VS降解率57.7%。小球藻易于在厌氧条件下降解且工艺运行稳定,整个系统具有较高的能源转化效率。 The chlorella that has been used mostly in microalgae researches,was selected to study its productivity of methane. Biochemical Methane Potential test (BMP) indicated that the methane yield reached 461 mL/g. Microalgae biomass was easily degraded by anaerobic microorganisms, and organics (including microalgae oils, proteins, carbohydrates and other cellular components, and the liquid organic) can be completely converted into biogas. Under semi-continuous operation condition with theorganic loading rate of 2.25 kg/(m3·d) in CSTtk reactor, the gas production rate of chlorella reached 1.1 m3/(m3·d), with methane content around 62% and the organic matter degradation rate around 57.7%, respectively. Chlorella was easily degraded under anaerobic conditions, and the process was stable. The entire system had a high energy conversion efficiency.
作者 王楠楠
出处 《环境卫生工程》 2015年第5期43-46,共4页 Environmental Sanitation Engineering
关键词 微藻 厌氧消化 生物甲烷 microalgae anaerobic digestion biomethane
  • 相关文献

参考文献9

  • 1Tabernero A,del Valle E M M,Galan M A. Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics[J]. Biochem Eng J,2012,63( 15): 104- 115.
  • 2Lain M K, Lee K T,Mohamed A R. Current status and challenges on microalgae-based carbon capture[J]. Int J Greenh Gas Con, 2012( 10):456-469.
  • 3Packer M. Algal capture of carbon dioxide;biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy [ J]. Energy Policy,2009,37 (9):3428-3437.
  • 4Xu L,Weathers P J,Xiong X R,et al. Microalgal bioreactors Challenges and opportunities[J]. Eng Life Sci,2009(3): 178-189.
  • 5李健,王广策.微藻生物技术在二氧化碳减排和生物柴油生产中的应用研究进展[J].海洋科学,2011,35(7):122-129. 被引量:8
  • 6Wijffels R H,Barbosa M J. An outlook on microalgae biofuels[J]. Science, 2010,329(5993 ):796-799.
  • 7Cooney M,Young G,Nagle N. Extraction of bio-oils from microalgae: A review[J]. Sep Purif Rev,2009(38): 291-325.
  • 8Quadrelli E A,Centi G,Duplan J L,et al. Carbon dioxide recycling Emerging large-scale technologies with industrial potential[J]. Chem Sus Chem,2011,4(9):1194-1215.
  • 9Callaghan F J,Wase D A J,Thayanithy K,et al. Continuous eodigestion of cattle slurry with fruit and vegetable wastes and chicken manure[J ]. Biomass Bioenergy,2002,22( 1 ): 71-77.

二级参考文献66

  • 1黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006,26(5):722-732. 被引量:135
  • 2张炜,李义连.二氧化碳储存技术的研究现状和展望[J].环境污染与防治,2006,28(12):950-953. 被引量:36
  • 3Haag A. Algae bloom again[J]. Nature, 2007, 447(7144): 520.
  • 4Solomon S. Climate Change 2007: The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on cli- mate change[M]. Cambridge, UK: Cambridge Univ Pr, 2007.
  • 5Solomon S, Plattner G, Knutti R, et al. Irreversible cli- mate change due to carbon dioxide emissions[J]. Pro-ceedings of the National Academy of Sciences, 2009, 106(6): 1704.
  • 6Birol F. World energy outlook[M]. Paris: paris press, 2008.
  • 7Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306.
  • 8Chisti Y. Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26(3): 126-131.
  • 9Knothe G, Van Gerpen J, Krahl J, et al. The Biodiesel Handbook[M]. Champaign, IL: AOCS Press, 2005.
  • 10Boddiger D. Boosting biofuel crops could threaten food security[J]. Lancet, 2007, 370(9591): 923-924.

共引文献7

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部