期刊文献+

暗通道结合小波变换的雾天图像复原 被引量:4

FOGGY IMAGE RESTORATION USING WAVELET TRANSFORM AND DARK CHANNEL PRIOR
下载PDF
导出
摘要 在雾天条件下,由于大气中悬浮微粒的散射作用,经图像传感器获得的图像会出现能见度低、对比度差等退化现象。传统的暗通道先验算法虽然能得到较好的复原效果,但不具备实时性。针对传统去雾算法的缺点,提出一种暗通道结合小波变换的去雾算法。在小波变换的低频分量中应用暗通道先验原理得到初始传输图,再用形态学滤波修正白色区域的传输图,应用图像分割对天空区域传输图修正,最后用引导滤波对其进行细化,将修正后的传输图代入雾天成像模型得到复原后的图像。实验结果表明,修改后算法去雾时间仅为HE的1/20,复原后图像的可见边集合数与HE相差不大,平均梯度约为HE的1.5倍。 In foggy conditions,due to the scattering effect of suspended atmospheric particles,the image captured by the image sensor will appear degradation of low visibility and poor contrast.Although traditional dark channel prior algorithm can get a good restoration result,but the real-time performance is poor.For the shortcomings of traditional defogging algorithms,we propose a new one which combines the dark channel with wavelet transform.First we get the initial transmission diagram using dark channel prior algorithm in low-frequency component of the wavelet transform.Then we modify the white area of the diagram using morphological filtering and correct the sky area of the diagram using image segmentation.Finally we refine it with the guided filtering,and substitute the amended transmission diagram into the fog imaging model to obtain the restored image.Experimental results demonstrate that the defogging time of the modified algorithm is only 1 /20 of that in HE’s algorithm.The number of visible edges sets in the restored image has slight difference to that of HE’s while the average gradient is 1.5 time higher.
出处 《计算机应用与软件》 CSCD 2015年第10期192-195,共4页 Computer Applications and Software
基金 中央高校基本科研业务费专项资金项目(2012202020204) 湖北省自然科学基金项目(2011CDB272)
关键词 图像去雾 小波变换 形态滤波 引导滤波 图像分割 Image defogging Wavelet transform Morphological filtering Guided filtering Image segmentation
  • 相关文献

参考文献14

  • 1Narasimhan S G, Nayar S K. Vision and the Atmosphere [ J ]. Interna- tional Journal of Computer Vision,2002,48 (3) :233 -254.
  • 2Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. NewYork, U- nited States: IEEE Computer Society,2001:325 - 332.
  • 3Shwartz S, Namer E, Schechner Y Y. Blind haze separation [ C ]//Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York,United States:IEEE Computer So- ciety ,2006 : 1984 - 1991.
  • 4Fattal R. Single image dehazing [ C ]//International Conference on Computer Graphics and Interactive Techniques. Los Angeles, United States : ACM SIGGRAPH ,2008 : 1 - 9.
  • 5Tan R T. Visibility in bad weather from a single image [ C ]//Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recogni- tion. Anchorage, United States : IEEE Computer Society,2008 : 1 - 8.
  • 6He Kaiming,Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior[ C ]//Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition. Miami, United States : IEEE Com- puter Society,2009 : 1956 - 1963.
  • 7刘巧玲,张红英,林茂松.一种简单快速的图像去雾算法[J].计算机应用与软件,2013,30(7):71-74. 被引量:6
  • 8王蓉,李伟,杨晓刚.一种雾天彩色图像复原快速方法研究[J].科学技术与工程,2013,21(28):8320-8324. 被引量:2
  • 9张文涛,王敬东,王子瑞,李鹏.基于暗元先验规律去雾后续处理研究[J].计算机应用与软件,2012,29(9):50-53. 被引量:1
  • 10马云飞,何文章.基于小波变换的雾天图像增强方法[J].计算机应用与软件,2011,28(2):71-72. 被引量:18

二级参考文献40

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2朱凯军,周焰,兰祖送.基于区域分割的雾天图像增强算法[J].计算机测量与控制,2006,14(5):661-663. 被引量:15
  • 3高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 4[7]崔屹.数学形态学方法及应用[M].北京:科学出版社,2002.
  • 5Nicolas Hautiere,Didier Aubert.Contrast restoration of foggy images through use of all onboerd canmera[J].Proceeding of the 8th intemational IEEE conference on intelligent transportation systems,2005,9:601-606.
  • 6Srinivasa G Narasimhan.Shree K Nayar.Contrast restoration of weather degraded images[J].IEEE Transactions on pattern analysis and machine intelligence,2003.25(6):713-724.
  • 7lnampud R B,Purimetla T N,Satyanarayana P G.contrast degradation for improving quality of an image[J].Geoscielice and Remote Sensing Symposium,2002.6:3408-3410.
  • 8Srinivasa G Narasimhan,Shree K Nayar.Removing weather effects from monochrome images[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001,2:186-193.
  • 9Schechner Y Y,Narasimhan S G,Nayar S K.Instant dehazing of imsges using polarition[J].IEEE computer society conferenco on computer vision and pattem recognition,2001,1:325-332.
  • 10Srinivasa G Nasnsimhan,Shree K Nayar.Shedding light on the weather[J].Proceedings of the 2003 IEEE computer society conference on computer vision and pattem recognition,2003,1:665-672.

共引文献38

同被引文献46

  • 1刘劲,杨平华.PC—Cluster下的FFT并行算法分析[J].工程地球物理学报,2006,3(2):130-136. 被引量:2
  • 2TAN R.Visibility in Bad Weather from a Single Image[C]∥Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,Alaska,USA,2008:1-8.
  • 3FATTAL R.Single Image Dehazing[J].ACM Transactions on Graphics(TOG),ACM,2008,27(3):72.
  • 4HE Kai-ming,SUN Jian,TANG Xiao-ou.Sing Image Haze Removal Using Dark Channel Prior[C]∥Computer Vision and Pattern Recognition,2009:1 956-1 963.
  • 5HE Kai-ming,SUN Jian,TANG Xiao-ou.Guided Image Filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1 397-1 409.
  • 6刘倩,陈茂银,周东华.基于单幅图像的快速去雾算法[C]∥25th Chinese Control and Decision Conference,2013:3 780-3 785.
  • 7MCCARTNEY E J.Optics of Atmosphere:Scattering by Molecules and Particles[M].New York:John Wiley and Sons,1976.
  • 8李冠章,罗武胜,李沛,吕海宝.修正Retinex照射反射模型的彩色图像增强[J].光学技术,2010,36(2):205-208. 被引量:2
  • 9胡伟,袁国栋,董朝,疏学明.基于暗通道优先的单幅图像去雾新方法[J].计算机研究与发展,2010,47(12):2132-2140. 被引量:43
  • 10禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2):143-149. 被引量:104

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部