期刊文献+

直接空冷凝汽器扁平管含不凝结气体的凝结换热 被引量:1

Condensation with Non-condensable Gas Inside Flat Tube of Air-cooling Condenser
下载PDF
导出
摘要 为深入了解直接空冷火电机组凝汽器的冬季运行特性,针对含有不凝结气体的扁平管内蒸汽顺流凝结传热过程,考虑了汽液两相流动的相界面剪切应力、相界面表面张力,以及相界面的扩散传质,建立了物理数学模型。改变扁平管出口不凝结气体的浓度、改变冷却能力,通过对数学模型的数值求解,得到冬季运行不同工况条件下,凝结温度和液膜厚度的空间分布。研究结果表明:在凝结过程的末端,出口不凝结气体含量对蒸汽冷凝温度的降低有显著的影响;可将出口不凝结气体含量作为直接空冷凝汽器提高防冻能力的重要控制变量。研究结果为直接空冷火电机组凝汽器防冻问题的解决提供了理论参考。 To have a deep understanding of the air-cooling condenser unit's operating characteristics in winter,steam condensation heat transfer process with non-condensable gas inside the flat tube is modeled by considering vapor-liquid two-phase interfacial shear stress,interfacial surface tension and mass diffusion of the interface.Then based on the model,by changing both the concentration of non-condensable gas at the exit and the heat exchange capability,a series of work were conducted.Thus a series of calculation results for the spatial distribution of condensate film and condensation temperature were obtained and analyzed.The results indicate that the concentration of non-condensable gas at the exit has a significant impact on the condensation temperature and the parameters should be utilized as the important control variables to improve the anti-freezing ability of the air-cooling condenser.The above results may supply some theoretical fundamentals for further solving the anti-freezing problem of air-cooling condenser.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2015年第5期80-86,共7页 Journal of North China Electric Power University:Natural Science Edition
基金 国家"973计划"课题资助项目(2015CB251503)
关键词 直接空冷凝汽器 扁平管 流动凝结 不凝结气体 防冻 air-cooling condenser fiat tube condensation flow and heat transfer non-condensable gas anti-freezing
  • 相关文献

参考文献19

  • 1Joo, J A , Hwang I H, Cho Y I, et al. Preventing Freezing of Condensate inside Tubes of Air-cooling Con- denser [ J]. Transactions of the Korean Society of Me- chanical Engineers, B, 2012, 36 (8): 811 -819.
  • 2Zhao H B, Wu H X, YanYH, etal. Research on the Variation Law of the Tube' s Inside-Wall Temperature of Direct Air-cooled Condenser [ C ]. 2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Shanghai, China, 27-29 March, 2012: 1-4.
  • 3Zanobini A. Formation and development of non-conden- sable gases in air cooled steam condensers [ J]. Quad- erni Pignone, 1982, 34:39 -45.
  • 4Larinoff M W. Air-cooled steam condensers non-freeze warranties [ C ]. Proceedings of the American Power Conference, Chicago, IL, United States, 18 -20 A- pril, 1995:439-443.
  • 5Larinoff M W. Inquiry specs can improve air-cooled condenser design [J]. Power Engineering, 1990, 94 (9) : 41 -43.
  • 6Li J D. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindri- cal condensers [ J]. International Journal of Heat and Mass Transfer, 2013, 57 (2): 708 -721.
  • 7Dharma R V, Murali K V, Sharma K V, et al. Convec- tive condensation of vapor in the presence of a non-con- densable gas of high concentration in laminar flow in a vertical pipe [ J ]. International Journal of Heat and Mass Transfer, 2008, 51 (25-26): 6090-6101.
  • 8Stevanovic V D, Stosic Z V, Stoll U. Three-dimension- al numerical simulation of non-condensables accumula- tion induced by steam condensation in a non-vented pipeline [ J]. International Journal of Heat and Mass Transfer, 2006, 49 (15- 16): 2420-2436.
  • 9Krishnaswamy S, Wang H S, Rose J W. Condensation from gas - vapour mixtures in small non-circular tubes[J]. International Journal of Heat and Mass Transfer, 2006, 49 (9-10): 1731-1737.
  • 10Hassaninejadfarahani F, Guyot M K, Ormiston S J. Nu- merical analysis of mixed-convection laminar film con- densation from high air mass fraction steam-air mixtures in vertical tubes [ J]. International Journal of Heat and Mass Transfer, 2014, 78:170-180.

二级参考文献24

共引文献55

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部