期刊文献+

一类新函数模型及通用加权总体最小二乘平差方法 被引量:8

General weighted total least squares method for a type of new functional model
原文传递
导出
摘要 针对摄影测量、计算机视觉、三维激光扫描、遥感影像几何纠正等领域中观测数据的特性,将y≈Aξ的变量含误差模型(EIV)拓展为y≈A(x)ξ的函数模型,该模型首先给出了设计矩阵协方差阵的计算方法,其次推导了一种通用的加权总体最小二乘(WTLS)平差算法和近似精度评定方法,并通过直线拟合、自回归模型参数估计算例进行验证计算.结果表明:无论观测值独立还是观测值相关,该方法与已有方法的WTLS平差结果及其精度一致,从而验证了该方法的正确性,且其算法更简洁方便.对于完善WTLS平差理论和方法,拓展总体最小二乘方法在3S技术中的应用有理论与现实意义. A functional model y≈A(x)ξwas derived from the errors-in-varibles(EIV)model of y≈Aξ,according to the characteristics of observation data from photogrammetry and computer vision,three dimensional laser scanning and geometric rectification of remote sensing imageries.Covariance matrix algorithms of design matrix was first introduced,then general weighted total least squares(WTLS)method and approximate accuracy assessment methods were presented.The validity of the proposed methodology was verified by a linear fitting example and an auto-regression example.The experimental results show that:whether the observations are correlated or not,the adjustment method proposed in this paper can achieve the same WTLS results and accuracy as existing methods.Moreover,it is more simple and convenient,and has practical significance in promoting WTLS adjustment theory and methods,as well as expanding applications of total least squares method in 3Stechnology.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2015年第5期952-958,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(41274012 41274010)
关键词 函数模型 EIV模型 加权总体最小二乘平差 functional model EIV model weighted total least squares
  • 相关文献

参考文献18

  • 1欧阳文森,朱建军.经典平差模型的扩展[J].测绘学报,2009,38(1):12-15. 被引量:15
  • 2朱建军,宋迎春.现代测量平差与数据处理理论的进展[J].工程勘察,2009,37(12):1-5. 被引量:18
  • 3MARKOVSKY I,VAN HUFFEL S.Overview of total least squares methods[J].Signal Process,2007,87:2283-2302.
  • 4MARKOVSKY I,RASTELLO M,PREMOLI P,et al.The element-wise weighted total least squares problem[J].Computational Statistics&Data Analysis,2006,50:181-209.
  • 5SCHAFFRIN B,WIESER A.On weighted total leastsquares adjustment for linear regression[J].Journal of Geodesy,2008,82(7):415-421.
  • 6SHEN Y Z,LI B F,CHEN Y.An iterative solution of weighted total least-squares adjustment[J].Journal of Geodesy,2011,85(4):229-238.
  • 7MAHBOUB V.On weighted total least-squares for geodetic transformations[J].Journal of Geodesy,2012,86(5):359-367.
  • 8SNOW K.Topics in total least-squares adjustment within the errors-in-variables model:singular cofactor matrices and prior information[D].Thesis:Ohio State University,2012:17-25.
  • 9FANG X.Weighted total least squares:necessary and sufficient conditions,fixed and random parameters[J].Journal of Geodesy,2013,87:733-749.
  • 10ZHOU Yongjun,KOU Xinjian,ZHU Jianjun.A newton algorithm for weighted total least-squares solution to a specific errors-in-variables model with correlated measurements[J].Stud Geophys Geod,2014,58(3):349-375.

二级参考文献178

共引文献304

同被引文献53

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部