期刊文献+

基于集成学习的软件缺陷检测 被引量:2

Software Defect Detection Based on Ensemble Learning
下载PDF
导出
摘要 近年来,使用机器学习方法来预测软件缺陷得到了广泛的关注。在实际工程中,软件缺陷特征的构造需要相关领域知识及大量时间,使得到的软件特征一般较少。并且,有缺陷的软件样本会大大少于无缺陷的软件样本,造成样本的高度不平衡。这里,通过显式的特征构造方法,把有限的原特征映射到高维度的特征空间;通过改进的Bagging以及随机特征子空间的方法,在得到类平衡的训练样本集的同时,提高模型的泛化能力。通过上述方法,得到一系列弱分类器。最后,使用一个简单的线性分类器训练得到各个弱分类器的权重来融合所有弱分类器,得到更好的分类效果。 In recent years, software defect prediction using machine learning methods have attracted a great deal of attention. In real world engineering, obtaining software features is difficult for constructing features of needing domain knowledge and a lot of time. And the num- ber of defective software sample will be much less than the samples without defects,leading to highly unbalanced. In this paper,through explicit feature structuring method, the limited original features are mapped to high dimension feature space. By improved Bagging and random feature subspace method, also get class balanced training sample set and improve the model generalization ability at the same time. Through the above method, get a series of weak classifiers. Finally, using a simple linear classifier, train the weights of the weak classifiers to obtain better classification result.
出处 《计算机技术与发展》 2015年第10期63-66,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61272273) 南京邮电大学校科研项目(XJKY14016) 江苏省333工程项目(BRA2011175)
关键词 软件缺陷检测 特征构造 改进Bagging 随机特征子空间 software defect detection feature constructing improved Bagging random feature subspace
  • 相关文献

参考文献17

  • 1Lyu M R. Software reliability engineering: a roadmap [ C ]// Proc of future of software engineering. Minneapolis: IEEE, 2007 : 153-170.
  • 2Nam J,Pan S J,Kim S. Transfer defect learning[ C]//Pro- eeedings of the 2013 international conference on software en- gineering. [ s. 1. ] : IEEE ,2013:382-391.
  • 3Seliya N, Khoshgoftaar T M, van Hulse J. Predicting faults in high assurance software[ C]//Proc of 2010 IEEE 12th inter- national symposium on high-assurance systems engineering. San Jose, CA : IEEE ,2010:26-34.
  • 4Gray D, Bowes D, Davey N, et al. Using the support vector ma- chine as a classification method for software defect prediction with static code metrics [ M ]//Engineering applications of neural networks. Berlin :Springer ,2009:223-234.
  • 5Yan Z, Chen X, Guo P. Software defect prediction using fuzzy support vector regression[ M]//Advances in Neural Networks -ISNN 2010. Berlin : Springer,2010 : 17-24.
  • 6杨静,张楠男,李建,刘延明,梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,20(2):114-116. 被引量:51
  • 7Wang J, Shen B, Chen Y. Compressed C4.5 models for soft- ware defect prediction[ C]//Proc of 12th international confer- ence on quality software. Washington: IEEE ,2012 : 13-16.
  • 8Paikari E, Richter M M, Ruhe G. Defect prediction using case -based reasoning:an attribute weighting technique based upon sensitivity analysis in neural networks [ J ]. International Jour- nal of Software Engineering and Knowledge Engineering, 2012,22 (6) :747-768.
  • 9Wang T, Li W. Naive Bayes software defect prediction model [ C]//Proc of international conference on computational intel- ligence and software ensineex4ns. [ s. 1. ] : [ s. n. ],2010 : 1 - 4.
  • 10Turhan B, Bener A. Analysis of Naive Bayes' assumptions on software fault data:an empirical study [ J ]. Data & Knowledge Engineering, 2009,68 ( 2 ) : 278 - 290.

二级参考文献10

共引文献57

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部