期刊文献+

基于改进Gabor滤波器的多模态特征融合技术 被引量:3

Multi-modal Features Fusion Technology Based on Improved Gabor Filter
下载PDF
导出
摘要 传统的Gabor滤波器具有良好的方向特性和尺度特性,然而传统的Gabor滤波器不能提取图像中弯曲区域的局部信息。文中首先对传统的Gabor滤波器加以改进,使其在具有方向和尺度特性的同时具有良好的曲率响应特性,因而对于图像中弯曲的区域能够提取丰富的边缘特征。图像在不同的Gabor滤波器特征下有不同的表现形式,利用Gabor滤波器丰富的多特征信息,可以形成包含丰富信息的多个模态。然后文中提出一个多模态学习(Multi-modal Learning)框架。在此框架内,样本集合被投影到一个公共的鉴别空间内,在这个空间里,来自不同模态的同类样本相互聚集,异类样本相互散开。文中提出的多模态学习框架能很好地利用Gabor滤波器的多特征信息,Poly U掌纹数据库和AR彩色人脸数据库的实验结果表明了该方法的有效性。 Traditional Gabor filter has good characteristics of direction and scale, but cannot extract the local information of bending area for image. Firstly,improve traditional Gabor filter to make it has good curvature response based on good characteristics of direction and scale. So for the image area can extract the edge of the rich characteristics of bending. After filtering with different characteristics of Gabor filter, images have more abundant characteristic information, and contain abundant information of multiple modes. Then propose a Multi- Modal Learning (MML) framework, within this framework, samples are projected onto a common space. In this common space, samples in same class from multiple modals are close to each other, while samples in different classes from multiple modals are far away from each other. Multi-modal learning framework proposed in this paper can make good use of Gabor filter characteristic information. Experimental results with PolyU palmprint database and AR color data set show the effectiveness of the method in this paper.
出处 《计算机技术与发展》 2015年第10期107-110,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61272273)
关键词 GABOR滤波器 曲率特性 多模态学习 特征提取 Gabor filter curvature response multi-modal learning feature extraction
  • 相关文献

参考文献15

  • 1赵振勇,王保华,王力,崔磊.人脸图像的特征提取[J].计算机技术与发展,2007,17(5):221-224. 被引量:18
  • 2尹飞,冯大政.基于PCA算法的人脸识别[J].计算机技术与发展,2008,18(10):31-33. 被引量:42
  • 3王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,19(5):147-149. 被引量:12
  • 4李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 5岳峰,左旺孟,张大鹏.掌纹识别算法综述[J].自动化学报,2010,36(3):353-365. 被引量:64
  • 6Kong A, Zhang D, Kamel M. Palmpfint identification using feature-level fusion [ J ]. Pattern Recognition, 2006,39 ( 3 ) : 478 -487.
  • 7Kong A W K, Zhang D. Competitive coding scheme for palm- print verification [ C]//Proc of international conference on pattern recognition. [ s. 1. ] :IEEE ,2004:520-523.
  • 8Pan X, Ruan Q Q. Palmprint recognition using Gabor-based local invariant features [ J ]. Neurocomputing,2009,72 (7-9) : 2040-2045.
  • 9Sun Z ,Tan T. Ordinal measures for iris recognition [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2211-2226.
  • 10Zhang D D,Kong W A, You J,et al. Online palmprint identifi- cation[ J]. IEEE Trans on Pattern Analysis and Machine Intel- ligence,2003,25 (9) : 1041-1050.

二级参考文献46

共引文献152

同被引文献25

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部