期刊文献+

属性多级化的认知诊断模型拓展及其Q矩阵设计 被引量:16

Extension of Cognitive Diagnosis Models Based on the Polytomous Attributes Framework and Their Q-matrices Designs
下载PDF
导出
摘要 本研究在传统0-1属性的基础上,拓展出可以处理属性多级化的认知诊断模型——PA-rRUM和PA-DINA模型。Monte Carlo模拟研究表明:拓展模型具有较高的属性诊断正确率和参数估计精度,且参数估计的稳定性较强,说明拓展模型基本可行,可以用于实现多级化属性的认知诊断。这弥补了传统0-1化属性认知诊断模型的不足,具有较好的发展和应用前景;同时本研究还探讨了拓展模型性能及属性多级化下测验Q矩阵的设计。总之,本研究对于进一步拓展认知诊断在实践中的应用提供了重要的方法和技术支持。 Based on the traditional cognitive diagnosis models(CMDs), this study developed two new cognitive diagnosis models, PA-rRUM and PA-DINA model respectively, to handle the polytomous attributes. Through Monte Carlo simulation, it indicated that: The parameters in the models could be identified, and robustness of the parameter estimation is relatively strong. Furthermore, the correct match ratios and accuracies of parameter estimation are decent. All these findings verified that the models are feasible for ploytomous attribute cognitive diagnosis. It also found that the precision of might be influenced by the sample size and the number of replications for the R*P matrix. The larger the sample size is, or the greater the number of replications is, the more precise they might be. The results suggested that the Q matrix should include the R*P matrix while the attribute is polytomous. In conclusion, the models overcame the shortcomings stemmed from dichotomous attribute models, thus they might provide a richer diagnostic result and more flexible models.
作者 蔡艳 涂冬波
出处 《心理学报》 CSSCI CSCD 北大核心 2015年第10期1300-1308,共9页 Acta Psychologica Sinica
基金 国家自然科学基金(31100756 31300876 31160203 31360237) 江西省社会科学规划项目重点项目(13JY01) 江西省教育科学规划项目(12YB088 13YB029) 高等院校博士点基金项目(20123604120001) 江西师范大学青年英才培育资助计划 东北师范大学应用统计教育部重点实验室开放课题(130026509)资助
关键词 多级化属性 认知诊断模型 rRUM DINA polytomous attributes cognitive diagnosis rRUM DINA
  • 相关文献

参考文献13

  • 1Chen, J. S., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419-437.
  • 2de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
  • 3de la Torte, J., Lam, D., Rhoads, K., & Tjoe, H. (2010, April). Measuring grade 8 proportional reasoning: The process of attribute identification and task development and validation. Paper presented at the meeting of the American Educational Research Association, Denver, CO.
  • 4DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-Matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468.
  • 5Ding, S. L., Luo, F., Wang, W. Y., & Xiong, J. H. (2015). The properties of 0-1 and polytomous teachability matrices and their applications, Journal of Jiangxi Normal University, 39(1), 64-68.
  • 6Feng, Y., Habing, B., & Huebner, A. (2014). Parameter estimation of the reduced RUM using the EM algorithm. Applied Psychological Measurement, 38(2), 137-150.
  • 7Hartz, S. M. (2002). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.
  • 8Junker, B. M., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
  • 9Karelitz, T. M. (2004). Ordered category attribute coding framework for cognitive assessments (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.
  • 10Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-236.

同被引文献151

引证文献16

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部