期刊文献+

分数阶流行病模型的近似解析解 被引量:2

The Analytical Approximation of Solutions for Fractional Epidemic Models
下载PDF
导出
摘要 在经典的SIR,SIRS,SIS流行病模型基础上引入关于时间的分数阶导数,并利用同伦摄动方法分别求出这3个模型的近似解析解,而且应用数值实验结果印证了FDEs的记忆特征.改进和推广了一些已有的成果,且对深入研究分数阶流行病模型有很好的启示作用. By the homotopy perturbation method( HPM),the approximate analytic solutions of fractional-order time derivatives are presented for the classical SIR,SIRS and SIS epidemic models with initial values. Besides,the numerical simulation results illustrate the memory character of FDEs,which improves and expands current results for epidemic dynamic. It will inspire further research on the fractional epidemic systems.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期526-530,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(61304161) 江西省教改课题(JXJG-13-1-3)资助项目
关键词 分数阶微分方程 流行病模型 同伦摄动方法 近似解析解 fractional differential equations epidemic model homotopy perturbation method approximate analytic solution
  • 相关文献

参考文献15

  • 1Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics-I [ J]. Bulletin of Math- emactial Biology, 1991,53 (1/2) : 33-55.
  • 2Baily N T J. The mathematical theory of infectious diseases [ M]. New York : Hafner, 1975.
  • 3E1-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption [ J ]. Mathematical and Computer Modelling, 1999,29(7) :31-43.
  • 4Zhang Zhonghua, Peng Jigen. A SIRS epidemic model with infection-age dependence [ J ]. Journal of Mathematical A- nalysis and Applications ,2007,331 (2) : 1396-1414.
  • 5Ma Wanbiao, Song Mei, Takeuchi Y. Global stability of an SIR epidemiemodel with time delay [ J ]. Applied Mathe- matics Letters,2004,17 (10) : 1141-1145.
  • 6McCluskey M C. Complete global stability for an SIR epi- demic model with delay:distributed or discrete [ J ]. Non- linear Analysis : Real World Applications, 2010, 11 ( 1 ) : 55 -59.
  • 7Huang Wenzhang, Han Maoan, Liu Kaiyu. Dynamics of an SIR reaction-diffusion epidemic model for disease trans- mission [ J ]. Mathematical Biosciences and Engineering, 2010,7(1) :51-66.
  • 8Peng Rui, Liu Shengqiang. Global stability of the steady states of an SIS epidemic reaction-diffusion model [ J ]. Nonlinear Analysis : Theory, Methods & Applications, 2009,71 (1/2) :239-247.
  • 9Diethelm K. The analysis of fractional differential equa- tions [ M ]. Berlin : Springer,2010.
  • 10Pooseh S, Rodrigues H S, Tortes D F M. Fractional deriva-tives in dengue epidemics [ EB/OL]. http ://arxiv. org/ sd:s/'1108. 1683.

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部