期刊文献+

网络上局部行为反应对爆发阈值的影响 被引量:3

The Impact of Local Behavioral Response on Epidemic Spreading in Networks
下载PDF
导出
摘要 利用微观马氏链近似方法研究了社会网络上基于局部信息的行为反应对疾病传播的影响.根据微分方程的稳定性理论,得到了爆发阈值与行为反应参数的依赖关系;结合同质小世界网络上的随机模拟,发现在网络结构不变的情况下个体的行为反应对疾病控制有一定的作用. The impact of local information based behavioral response on epidemic spreading in social networks is studied by using the microscopic Markov-chain approximation approach. According to the stability theory of differential equations,the relation between the epidemic threshold and the response parameter is obtained. Combining with the stochastic simulations on homogeneous small-world networks,the results suggest that local behavior response is effective in controlling epidemic outbreak.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期531-535,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(61203153 61463022)资助项目
关键词 社会网络 局部信息 行为反应 爆发阈值 social networks local information behavioral response epidemic threshold
  • 相关文献

参考文献3

二级参考文献92

  • 1Anderson R M,May R M.1992.Infectious Disease of Humans (Oxford:Oxford University Press).
  • 2Dailey D J,Gani J.2001.Epidemic Modeling:An Introduction (Cambridge:Cambridge University Press).
  • 3Boccaletti S,Latora V,Moreno Y,Chavez M,Hwang D U.2006.Phys.Rep.424 175.
  • 4Newman M E J.2010.Networks:An Introduction (Oxford:Oxford University Press).
  • 5Dorogovtsev S N,Goltsev A V,Mendes J F F.2008.Rev.Mod.Phys.80 1275.
  • 6Barrat A,Barthelmy M,Vespignani A.2008.Dynamical Processes on Complex Networks (New York:Cambridge University Press).
  • 7Pastor-Satorras R,Vespignani A.2001.Phys.Rev.Lett.86 3200.
  • 8Pastor-Satorras R,Vespignani A.2001.Phys.Rev.E 63 066117.
  • 9Hufnagel L,Brockmann D,Geisel T.2004.Proc.Natl.Acad.Sci.101 15124.
  • 10Colizza V,Barrat A,Barthelemy M,Vespignani A.2006.Proc.Natl.Acad.Sci.103 2015.

共引文献17

同被引文献37

  • 1Newman M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2): 167-256.
  • 2SaumeU-Mendiola A, Serrano M, Boguna M. Epidemic spreading on interconnected networks[J]. Phys Rev E , 2012, 86: 026106.
  • 3Vespigani A. Complex networks: The fragility of interdependency[J]. Nature, 2010, 464(7291): 984-985.
  • 4Salehi M, Siyari P, Magnani M, et al. Multidimensional epidemic thresholds in diffusion processes over interdependent networks[J]. Chaos Solitons Fractals, 2015, 72: 59-67.
  • 5Min Y, Hu J R, Wang W H, et al. Diversity of multilayer networks and its impact on collaborating epidemics[J]. Phys Rev E, 2014, 90(6): 062803.
  • 6Kiss I Z, Green D M, Kao R R. The effect of contact heterogeneity and multiple routes of transmission on final epidemic sizegJJ. Math Biosci, 2006, 203(1):124-136.
  • 7Granell C, Gmez S, Arenas A. Dynamical interplay between awareness and epidemic spreading in multiplex networks[J]. Phys Rev Lett,2013,111(12):12870.
  • 8Sahneh F D, Scoglio C. Competitive epidemic spreading over arbitrary multilayer networks[J]. Phys Rev E, 2014, 89(6): 062817.
  • 9Wu Qingchu, Zhang Haifeng, Small M, et al. Threshold analysis of the susceptible-infected-susceptible model on overlay networks[J]. Commun Nonlinear Sci Numer Simnl, 2014, 19(7):2435-2443.
  • 10Kan J Q, Zhang H F. Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading-an approach based on multiplex networks[J], arXiv preprint arXi1502.00392, 2015.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部