期刊文献+

考虑应变依赖性的硬涂层复合结构有限元分析 被引量:2

Finite element analysis of hard-coating composite structure considering strain-dependent characteristic
原文传递
导出
摘要 在简要介绍硬涂层材料应变依赖性的基础上,推导了用迭代有限元法求解硬涂层复合结构动力学特性的原理,进一步提出了求解硬涂层复合结构固有频率和振动响应的计算流程,即由振动响应值来修正硬涂层材料参数,进而迭代求解硬涂层复合结构的动力学参数.最后以一个涂敷MgO+Al2O3硬涂层的悬臂梁为例进行了实例研究,在考虑MgO+Al2O3硬涂层材料应变依赖性的基础上,获得了不同激励幅度下悬臂梁的固有频率和振动响应,并与线性计算结果进行了比对.结果表明;该硬涂层复合结构悬臂梁具有软式非线性,同时,对应于不同的激励幅度,迭代计算获得的共振响应相对于线性计算值减少了29%~48%,说明硬涂层材料的应变依赖性会进一步增强硬涂层的减振效果. On the basis of introducing the strain-dependent characteristic of hard-coating material,the dynamic characteristic solution theory of iterative finite element method was derived.Moreover,the processes of calculating natural frequency and vibration response were presented,which can be summarized as:the hard coating material parameters were corrected by the vibration response,and then the dynamic parameters were solved by the iterative solution program.At last,a cantilever beam coated with MgO+Al2O3hard coating was chosen to display the effectiveness of the proposed method.Considering the strain-dependent characteristic of MgO+Al2O3 hard coating,the natural frequency and vibration response were obtained under different exciting levels and also compared with the relative values obtained by linear calculation.Results show that the hard-coating composite structure cantilever beam displays the soft nonlinear phenomenon,and the resonance responses reduce by29%-48% compared with linear calculation correspondingly to different exciting levels.This shows that the strain-dependent characteristic of hard-coating material can promote the effect of vibration reduction.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第9期2212-2218,共7页 Journal of Aerospace Power
基金 国家自然科学基金(51375079) 中央高校基本科研业务费专项资金(N140301001)
关键词 应变依赖性 硬涂层 复合结构 有限元分析 迭代计算 strain-dependent characteristic hard-coating composite structure finite element analysis iterative calculation
  • 相关文献

参考文献15

  • 1Limarga A M,Duong T L,Gregori G,et al.High-temperature vibration damping of thermal barrier coating materials[J].Surface and Coatings Technology,2007,202(4):693-697.
  • 2胡浩炬,张建宇,杨晓光,李志永,费斌军.等离子热障涂层失效机理的数值分析研究[J].航空动力学报,2010,25(5):1085-1091. 被引量:7
  • 3Grzesik W,Zalisz Z,Nieslony P.Friction and wear testing of multilayer coatings on carbide substrates for dry machining applications[J].Surface and Coatings Technology,2002,155(1):37-45.
  • 4Hassani S,Bielawski M,Beres W,et al.Predictive tools for the design of erosion resistant coatings[J].Surface and Coatings Technology,2008,203(3):204-210.
  • 5Blackwell C,Palazotto A,George T J,et al.The evaluation of the damping characteristics of a hard coating on titanium[J].Shock and Vibration,2007,14(1):37-51.
  • 6Ivancic F,Palazotto A.Experimental considerations for determining the damping coefficients of hard coatings[J].Journal of Aerospace Engineering,2005,18(1):8-17.
  • 7Torvik P J.A slip damping model for plasma sprayed ceramics[J].Journal of Applied Mechanics,2009,76(6):061018.1-061018.8.
  • 8Lauwagie T,Lambrinou K,Patsias S,et al.Resonant-based identification of the elastic properties of layered materials:application to air-plasma sprayed thermal barrier coatings[J].NDT&E international,2008,41(2):88-97.
  • 9Patsias S,Saxton C,Shipton M.Hard damping coatings:an experimental procedure for extraction of damping characteristics and modulus of elasticity[J].Materials Science and Engineering:A,2004,370(1):412-416.
  • 10Reed S A,Palazotto A N,Baker W.Determining material properties of nonlinear materials from transient response[R].ASME Paper IMECE2007-43518,2007.

二级参考文献19

  • 1徐惠彬,宫声凯,陈立强,张春霞.热、力耦合作用下热障涂层的失效机制[J].北京航空航天大学学报,2004,30(10):919-924. 被引量:19
  • 2Nusier S Q, Newaz G M, Chaudhury Z A. Experimental and analytical evaluation of damage processes in thermal barrier coatings [J]. International Journal of Solids and Structures, 2000,37 (18):2495-2506.
  • 3Ali M Y, Nusier S Q, Newaz G M. Mechanics of damage initiation and growth in a TBC/superalloy system[J]. International Journal of Solids and Struetures, 2001,38 (19) : 3329-3340.
  • 4Wang J S, Evans A G. Effects of strain cycling on buckling, cracking and spalling of a thermally grown alumina on a nickel-based bond coat[J]. Acta Materialia, 1999,47(2) : 699-710.
  • 5Evans A G, He M Y, Hutchinson J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia,2000,48(10) :2593-2601.
  • 6ZHOU Chungen,WANG Na, XU Huibin. Comparison of thermal cycling behavior of plasma sprayed nanostructured and traditional thermal barrier coatings[J]. Materials Science and Engineering, 2007,452-453 : 569-574.
  • 7Charalambides P G, Mcmeeking R M. Near-tip mechanics of stress-induced microcracking in brittle materials[J].Journal of the American Ceramic Society, 1988, 71 (6): 465-472.
  • 8Demasi J T, Sheffler K D, Ortiz M. Thermal barrier coating life prediction model development phase I [R ]. NASA/CR-182230,1989.
  • 9Chulya A,Walker K P. A new uniformly valid asymptotic integration algorithm for elasto-plastic-creep and unified viscoplastic theories including continuum damage [R].NASA TM-102344, ICOMP 89-22,1989.
  • 10Nissley D M,Meyer T G,Walker K P. Life prediction and constitutive models for engine hot section anisotropic ma terials[ R]. NASA/CR-189233,1992.

共引文献6

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部